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Abstract

Microtubules confined to the two-dimensional cortex of elongating plant
cells must form a parallel yet dispersed array transverse to the elongation
axis for proper cell wall expansion. Collisions between microtubules, which
migrate via hybrid treadmilling, can result in plus-end entrainment (“zipper-
ing”) or catastrophe. Here, I present (1) a cell-scale computational model
of cortical microtubule organization and (2) a molecular-scale model for
microtubule-cortex anchoring and collision-based interactions between mi-
crotubules. The first model treats interactions phenomenologically while
the second addresses interactions by considering energetic competition be-
tween crosslinker binding, microtubule bending and microtubule polymeriza-
tion. From the cell-scale model, we find that plus-end entrainment leads to
self-organization of microtubules into parallel arrays, while collision-induced
catastrophe does not. Catastrophe-inducing boundaries can tune the dom-
inant orientation. Changes in dynamic-instability parameters, such as in
mor1-1 mutants in Arabidopsis thaliana, can impede self-organization, in
agreement with experiment. Increased entrainment, as seen in clasp-1 mu-
tants, conserves self-organization, but delays its onset. Modulating the abil-
ity of cell edges to induce catastrophe, as the CLASP protein may do, can
tune the dominant direction and regulate organization. The molecular-scale
model predicts a higher probability of entrainment at lower collision angles
and at longer unanchored lengths of plus-ends. The models lead to several
testable predictions, including the effects of reduced microtubule severing in
katanin mutants and variable membrane-anchor densities in different plants,
including Arabidopsis cells and Tobacco cells.
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Chapter 1

Introduction

Microtubules (MTs) are long rigid structural polymers that form part of a
living cell’s “cytoskeleton” [1]. These dynamic polymers can grow and shrink
in response to stimuli and play an important role in many cell functions,
including mitosis [1], organelle positioning [88], axon formation in neurons
[38, 119], immune cell activation [17], cell shape determination [34], cell
motility [95] and vesicle transport [103]. They are implicated in disease
including Alzheimer’s disease [12], Parkinson’s disease [49], many forms of
cancer [82] and transmission of bacterial infection [99]. MTs exist in animal,
plant and fungal cells, but many of their roles are different.

MTs form a variety of ordered structures inside cells of different organ-
isms. A fundamental question is how MTs become organized into these
structures. Specifically, how do the molecular properties of MTs and asso-
ciated components result in the emergence of MT organization in a manner
that is responsive to the cell’s environment? In plant cells, one MT structure
is the the cortical MT (CMT) array. The aim of this thesis is to address the
above question in the context of the plant CMT array.

1.1 Microtubules

MTs are polymers composed of dimers of the proteins α-tubulin and β-
tubulin, arranged in a hollow cylinder 25 nm in diameter. The length of
MTs varies and can reach up to 103 µm in vivo [140]. MTs are members
of the class of biological polymers that constitute the cytoskeleton. In eu-
karyotes, the cytoskeleton consists of MTs and microfilaments of the protein
actin [1]. Animal cells contain a third kind of cytoskeletal element called
intermediate filaments, whose presence in plants is debated [19, 68]. In
bacteria, homologues of all three cytoskeletal proteins exist [26].

MTs are highly dynamic due to polymerization. They are polar, with
distinct polymerization properties at the so-called plus-end and minus-end.
The plus-end randomly switches between states of growth, rapid shrinking
[94] and intermittent pauses [120]. Transition from growth to shrinkage is

1
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Figure 1.1: Schematic of the structure of a MT, shown in (a) as a tube
composed of dimers of the protein tubulin that is associated with either GTP
(yellow) or GDP (green). (b) A MT switches between growth and shrinkage,
known as ‘dynamic instability”. (c) Depolymerization at the minus-end and
dynamic instability at the plus-end leads to hybrid treadmilling, discussed
in Sec. 2.3.1.

known as catastrophe, and transition from shrinkage to growth is known as
rescue. This behaviour is termed dynamic instability.

The polymerization properties of individual MTs are represented in dif-
ferent ways [21, 46, 90, 129]. A common model, referred to here as the
growth-state model, was described by Mitchison and Kirschner [94] and
developed in partial differential equation (PDE) form by Dogterom and
Leibler [46] (described explicitly in Sec. 4.2). This model, in either PDE
form or individual-based form (see Sec. 2.4.1), represents MTs as rods with
a continuous length (in microns, as opposed to number of subunits) and
assumes transition times between growth states and shrinkage states to be
exponentially distributed. This model predicts that, in the absence of inter-
actions, MTs will be exponentially distributed in length. Experiment has
confirmed both exponentially distributed lengths [80] and transition times
[74], although both theoretical and experimental evidence exists for non-
exponential transition times [105]. Omitting nucleation, the growth-state

2



1.1. Microtubules

model is described by four parameters: growth and shrinkage velocities and
two transition rate constants. These polymerization properties emerge from
the molecular properties of MTs. The dimers of tubulin can be associated
with either GTP or GDP (guanosine triphosphate and guanosine diphos-
phate, respectively). Dimers at the plus-end are GTP-associated. Catas-
trophe is the spontaneous switch of the MT plus-end from a state in which
growth dominates, to a state in which shrinkage dominates, due to the loss
of the polymerization-promoting GTP-tubulin cap through hydrolysis.

In addition to their polymerization properties, the dynamics of MTs
are also affected by their mechanical properties. The elastic properties of
a biopolymer can be interpreted using the linear elastic rod model [10] in
which the mechanical energy is

H =
∫

1
2
B [curvature]2 +

1
2
C [twist]2 +

1
2
D [stretch]2 +

1
2
F [shear]2dl

where there are four possible modes of deformation (bending/curvature,
twist, stretch and shear), each with an associated elastic modulus (A, B, C,
D, F ). The parameter B is the bending rigidity, also known as the flexural
rigidity or bending modulus, with units of pN nm2 (= 10−30 N m2). Typ-
ically for biopolymers such as MTs, bending as described by the curvature
is the most important mode of deformation [6]. For MTs, experiments have
measured bending rigidities ranging over B ≈ 1 × 106 to 44 × 106 pN nm2

[129]. For uniform, isotropic materials [85], the elastic modulii are related
by

B = EI (1.1)
C = GI (1.2)
D = EA (1.3)
F = GA (1.4)

where E is the Young’s modulus, G is the shear modulus of the mate-
rial, A is the cross-sectional area and I is the second moment of the area.
Mickey and Howard [91] calculated the Young’s modulus of a MT to be
E = 1.4GPa = 1.4×103 pN/ nm2, roughly the same as the Young’s modulus
computed for actin, intermediate filaments, collagen (another biopolymer)
and DNA [71]. The similarity of Young’s modulii for those biopolymers
suggests the uniform, isotropic model of biopolymers is appropriate. This
further suggests that the cylindrical structure of MTs endows them with
high bending stiffness, since a hollow cylinder has larger I than an equal
amount of mass concentrated in a linear or helical polymer.

3



1.2. Functions of microtubules

Both polymerization and mechanical properties of MT dynamics de-
scribed above are affected by other proteins, collectively known as MT-
associated proteins (MAPs) that bind polymerized tubulin. A few MAPs
are listed here.

• The animal XMAP215 [129] and its plant homologue MOR1 [136]
bind along the length of MTs and modify their dynamic instability
parameters.

• In animals, the CLASP protein captures MT plus-ends near the cell
cortex, possibly by decreasing the hydrolysis rate of GTP-tubulin
dimers and therefore down-regulating the catastrophe rate [92]. CLASP
is also present in plant cells, and its function is discussed in Sec. 2.3.7.

• Katanin, named for the Japanese word katana meaning “sword”, severs
MTs along their length, often near their minus-end [130].

• A protein genetically related to tubulin, called γ-tubulin, forms a ring
known as the γ-tubulin ring complex (γ-TuRC) which nucleates new
MTs [88].

• Members of the plant MAP65 family, and its homologues Ase1p [75]
in fission yeast Schizosaccharomyces pombe and PRC1 in humans [89],
is involved in bundling adjacent MTs [137].

• Phospholipase-D binds MTs in plants and is involved in anchoring
MTs to the cell membrane [53].

• A class of MAPs important in many cell functions are MT-based
molecular motors dynein and kinesin [71]. These motors move along
the length of MTs at speeds up to 7µm/ s and have the ability to
generate forces up to tens of pN [71].

Studies of MTs are aided by drugs that affect MT dynamics. The drug
taxol [31, 92, 132] stabilizes MTs by inhibiting their polymerization dynam-
ics, and affects MT mechanical rigidity, although it is unclear how [129].
The drug oryzalyn [8, 125], in contrast, induces depolymerization of MTs in
plants and protists, but not in animal cells.

1.2 Functions of microtubules

As mentioned, MTs in cells form various structures that play a role in sev-
eral vital cell functions. Three structures and their functions are discussed

4



1.2. Functions of microtubules

here: asters and organelle positioning, the mitotic spindle and eukaryotic
cell division, and plant CMTs and plant cell elongation.

1.2.1 Asters and organelle positioning

A common structure formed by MTs in cells is a polarized, radial array
[40, 88] in which the minus-ends are anchored and stabilized at a focus, and
the plus-ends extend outward from this focus. The focus is one example of
a MT organizing centre (MTOC) and the array is called an aster, after the
greek word αστηρ meaning “star”. The focus is typically near the geometric
centre of the cell and/or on the surface of the cell nucleus [140]. Indeed,
the astral structure is required for the proper centering of the cell nucleus,
as well as centering other cell components including pigment granules in
melanophores [40] (the cells that endow exothermic (cold-blooded) animals
with skin colour).

How asters form and how they approximately find the cell centre is
yet to be fully elucidated. In animals, the MTOC is made of a protein
structure called a centrosome. Fission yeast Schizosaccharomyces pombe and
budding yeast Saccharomyces cerevisiae have a structure called the spindle
pole body, which serves a similar function at the centrosome in animal cells.
The centrosome and spindle pole body contain γ-TuRC, which nucleates new
MTs and anchors their minus-ends to the centrosome. Some cells lacking
centrosomes exhibit asters. In certain plant cells, astral structures form
when γ-TuRC localizes to the nuclear membrane. MTs can self-organize
into astral structures in anucleate cells and in vitro in vesicles [102, 111]
with the help of molecular motors.

How do asters find the centre of the cell? Proposed mechanisms differ
depending on the cell. For cells whose radius is ∼ 5µm, such as fission yeast
S. pombe, MTs can drive the aster towards the cell centre by pushing on
the cell boundaries [40]. In larger cells with radius ∼ 50µm such as eggs of
nematode Caenorhabditis elegans, pushing forces are complicated since long
MTs may buckle under less force (although this is debated in the context
of a mechanically resistive cytoplasm) [140], and pulling forces by molecular
motors at the cell boundary may contribute to centering [22].

1.2.2 The mitotic spindle and the cell cycle

A key step in the process of a replicating eukaryotic cell is mitosis [1], the
process during which the chromosomes are transported to opposing poles
of the mother cell such that one copy each is inherited by each of the two

5



1.2. Functions of microtubules

daughter cells. Mitosis is temporally divided into several phases. The time
between successive divisions is called interphase, during which the DNA is
replicated. During prophase in animals including C. elegans, the frog Xeno-
pus laevis, the fruit fly Drosophila melanogaster and humans, a microtubule
structure forms when the two asters move to opposite ends of the cell. This
aster-derived structure is called the mitotic spindle. The mitotic spindle
attaches to the chromosomes (during metaphase), along with molecular mo-
tors, in structures called kinetochores, and eventually corresponding pairs of
chromosomes are pulled apart (during anaphase) with the help of molecular
motors. Mitosis is followed by cytokinesis, during which the mother cell is
physically split into two daughter cells.

Cell division in budding yeast S. pombe and fission yeast S. cerevisiae
differs from cell division in animals, where the mitotic spindles are comprised
of fewer motors, MTs and chromosomes [54, 75, 107, 110].

Mitosis is different in higher plants such as Arabidopsis thaliana since,
as mentioned above, they do not contain centrosomes. Before prophase, a
ring of MTs and actin filaments forms at the site of the future cell wall, near
midcell. This band of cytoskeletal elements is called a preprophase band
(PPB) [130].

1.2.3 Plant CMTs and cell elongation

Unlike animal cells, plant cells have a stiff cell wall outside the cell mem-
brane. The cell wall is composed primarily of cellulose, which is synthesized
in the plasma membrane, then exported to the cell exterior and incorporated
into the cell wall [133]. Isotropic insertion of new cell wall material would
lead to isotropic cell expansion. Thus plant cells that undergo anisotropic,
unidirectional expansion, such as elongating root cells and elongating stem
cells, require a mechanism to direct cell wall growth. The internal turgor
pressure of plant cells (0.3-0.9 MPa [123]) complicates the task of anisotropic
expansion.

While the mechanism of anisotropic cell expansion involves many com-
ponents, described in Sec. 2.2, a key component is a MT structure located
at the cell cortex, the inner surface of the cell membrane. Here, plant CMTs
form de novo and organize into an array in which they are parallel to each
other, yet dispersed throughout the cortex of cell faces that will undergo
elongation. A schematic is shown in Fig. 1.2 and a fluorescence image of a
CMT array is shown in Fig. 1.3. The direction perpendicular to the CMT
array is the direction of anisotropic cell elongation.

Unlike the other MT structures described above, plant CMTs lack an

6
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Figure 1.2: Structures formed by MTs in elongating plant cells. From left
to right, the mitotic spindle during metaphase, followed by disassembly and
reformation at the cortex. During interphase, the MTs reform at the cortex
and either remain randomly arranged, if the cell is in the division zone, or
become parallel, if the cell is in the elongation zone.

organizing centre to which their minus-ends are attached. Because of the
lack of organizing centre, the CMTs are said to be acentrosomal and the
CMT array is said to self-organize. The self-organization of plant CMTs
occurs in most elongating cells of most higher plants including Arabidopsis.

Since CMTs are confined to the two-dimensional surface of the cortex,
they can interact with one another upon contact in several ways. Among
these are “entrainment”, discussed in detail in Sec. 2.3.2, catastrophe and
crossover. Schematic depictions of these collision resolutions are shown in
Fig. 2.3. It has been conjectured that these interactions are sufficient to
give rise to the organization of the CMT array [44]. In general, two scales
of questions about CMT self-organization remain to be elucidated. First
are cell-level questions: How do interactions between MTs give rise to cell-
scale order? How do changes in the molecular interactions, and in cell
geometry and intracellular signalling, affect self-organization? A second
scale of questions is molecular: how do interactions such as entrainment
and collision-induced catastrophe occur? Why do they occur at different
frequencies for different collision angles? How are MTs held to the cortex
and how does this anchoring affect MT-MT interactions?

7



1.3. Brief chapter summaries

Figure 1.3: Fluorescence image of a CMT array in an elongating cell of
Arabidopsis. Tubulin is labelled with GFP fluorescent markers. MT arrays
in neighboring cells are visible. Obtained with permission from J. Christian
Ambrose (UBC Botany).

1.3 Brief chapter summaries

This thesis presents mathematical models of CMTs in plants with a focus on
two aspects: first, a quantitative understanding of the dynamics of micro-
tubules based on mechanical and chemical first principles; and second, mod-
elling that recapitulates and informs experiments, particularly data from
fluorescence microscopy in Arabidopsis wild-type (WT) and mutants.

• In Chapter 2, I present biological background and review recent work
on modelling CMTs, including a summary of the main results of this
thesis. This review contains some general conclusions.

• Chapter 3 presents a biophysical model of how microtubules are at-
tached to the plant cell cortex, and how this attachment drives inter-
actions between colliding microtubules. This model, on the scale of
individual microtubules, explains what gives rise to angle-dependent
probabilities of specific interactions and quantitatively predicts these
probabilities.

• Chapter 4 presents a model of CMT organization. In this cell-scale
model, the microtubule interactions described in Chapter 3 are taken
as phenomenological events. Modifications of the model allow us to
address mutants, the function of MAPs and the relative importance of
different collision resolutions. This model considers microtubules on a
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1.3. Brief chapter summaries

two-dimensional surface either without boundaries, or on the surface
of a cylinder.

• In Chapter 5, the cell-scale model is extended to include the effects
of cell edges revealed in recent experiments of the Wasteneys lab. To
more accurately depict the cortex of polyhedral cells, simulations take
place on a cube.

• Finally, Chapter 6 contains overall conclusions and a discussion of the
tools of mathematical modelling used in the thesis.

9



Chapter 2

Plant cortical microtubules
and mathematical modelling

2.1 Introduction

In this review I discuss the two-dimensional array formed by MTs attached
parallel to the cell cortex — the inside of the outer envelope of a plant cell —
in elongating plant cells. Plant CMTs are the most prevalent microtubule
array in the biosphere [39] and historically were among the first microtubules
discovered [87]. Our understanding of CMT organization has made recent
progress experimentally (For recent reviews see [47, 64, 132, 133]) and the-
oretically [2, 3, 48, 121, 126].

This chapter reviews CMT organization with an emphasis on theoretical
modelling. In Sec. 2.2, I briefly locate CMT organization in the broader
context of plant morphogenesis. In Sec 2.3, I summarize experimental and
theoretical literature relevant to modelling. In Sec. 2.4, I summarize recent
modelling efforts including my own, the results of which are presented in
the remaining chapters of this thesis. Sec. 2.5 presents overall conclusions
and open questions that drive continuing theory and experiment.

2.2 Plant morphology: Why plants need cortical
microtubules

Many plant cells contain a variety of MT structures, summarized in Fig. 2.1.
Elongating cells in the root, stem and petioles (defined in the figure) exhibit
organized CMT arrays. The CMT array plays a role in the complex process
in which a plant grows into a specific shape, which I describe here.

Being sessile, plants respond to their environment by modifying their
morphology. Growth towards a stimulus is called tropism (in contrast to
movement towards a stimulus, called taxis). A simplified description of the
pathway leading to elongation, shown in Fig. 2.2, consists of seven steps,
where there are many feedback loops and other complications.

10



2.2. Plant morphology: Why plants need cortical microtubules
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Figure 2.1: Schematic anatomy of a mature and seedling of a higher plant
such as Arabidopsis, and cell suspension culture such as Tobacco BY-2.
(a) Shoot apical meristem, (b) stem division zone cells, (c) petiole cells
(d) puzzle-piece leaf pavement cells (e) guard cells surrounding stomata (f)
stem elongating cell, (g) root elongating cell, (h) root division zone cells,
(i) trichoblast and root hair, (j-l) cell suspension culture cells, (m) cotyle-
don petiole cells, (n) hypocotyl cells. Plant microtubules, shown in blue,
exhibit different patterns. In (1) elongating cells, MTs are transverse to the
axis of elongation. (2) Cells in various stages of the division cycle exhibit
preprophase bands, phragmoplasts, spindles, and mixed-polarity cortical ar-
rays. (3) In addition, a wide variety of cells have specialized MT patterns.
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2.2. Plant morphology: Why plants need cortical microtubules

1. Environmental cue detection or execution of a default plan. En-
vironmental cues include phototropism to light in the shoot [104],
chemotropism to nutrients in the root [25] , and in both organs gravity
and touch [18].

2. Plant-wide (intercellular) signalling, either biochemically by hormones
such as auxin, gibberelin and ethylene [124], or mechanically by stress
[61]

3. Within-cell signalling: directly to MTs or via cell wall expansion ma-
chinery. In roots, CMTs receive two signals: one to self-organize, and
another defining the major axis, to which their dominant direction
will be transverse. Evidence that these two signals are independent
comes from mutations in several genetic loci, which allow the CMT
array to organize, but in an oblique dominant direction resulting in a
helical array [72]. In addition, some mutants have organized arrays,
but in random dominant directions that are uncoordinated between
neighbouring cells [13]. Other mutants have disorganized CMTs [136].
With these separate signals, the CMT array self-organizes into the dis-
persed parallel arrays, and tunes its dominant direction. In either case,
what is the pathway that takes the intercellular signals and transduces
them within-cell to the CMT array? In leaf pavement cells, hormones
signal to rho-of-plant proteins, which in turn signal to RIC1, which
interacts directly with MTs [52]. For gravity and touch response in
roots, EB1 is involved [18].

4. Self-organization of CMTs. The mechanism enabling MAPs and cell
geometry to effect CMT organization is the focus of the remaining
sections in this review.

5. CMT signal to lateral cell wall expansion machinery. Since their dis-
covery, researchers theorized that CMTs determine the direction of
microfilaments upon their insertion [87]. However, many contraindi-
cations [15], including the observation, aided by the mor1-1 mutant,
that the microfibrils and microtubules can each be disrupted indepen-
dently [69], led to a new hypothesis that CMTs strengthen the cellulose
microfilaments, possibly by regulating their length [131]. Thus, with
disrupted CMT organization, plant cells can still grow albeit with de-
fects [7, 61, 78]. There is also evidence of feedback from the cell wall
to the CMTs [133].

12



2.2. Plant morphology: Why plants need cortical microtubules

6. Cell growth and anisotropy. As new microfibrils are inserted, they
resist the turgor pressure and define the shape of the cell.

7. Organ shape and plant morphology arise ultimately from the shape
and arrangement of the constituent cells.

2.2.1 Mathematical modelling of plant morphology and its
components

Several steps in the multi-scale pathway leading to tropism (growth towards
a stimulus) have been aided by mathematical modelling, some of which I
review here.

Intercellular signalling by hormones

Long-range signalling is mediated in part by plant hormones. Plant roots
are divided into several zones (Fig. 2.1) including (i) the root apical meris-
tem, where cell division is controlled to produce either downward growth of
the primary root or the formation of secondary (lateral) meristems, (ii) the
division zone, where cells divide in a plane transverse to the major axis, and
(iii) the elongation zone, where cells cease dividing and undergo anisotropic
growth. Grieneisen et al. [59] developed a computational model of auxin,
and demonstrated that a pattern of auxin-efflux channels (PINs) are suffi-
cient to generate the auxin gradient seen experimentally, and explain the
emergence of the different zones. The auxin pattern does not require inho-
mogeneous auxin sinks or sources, as had been assumed [51]. Further, by
assuming that local levels of auxin result in either cell differentiation or cell
elongation, Grieneisen et al. [59] demonstrated that the auxin gradient can
maintain the defined zones. Their model recapitulates behaviour on multi-
ple timescales: formation of the auxin gradient occurs in hours, while cell
and organ expansion occur after tens of days. Laskowski et al. [86] extended
the model of Grieneisen et al. [59] and demonstrated that auxin-dependent
initiation of lateral roots arises naturally after the apical root is bent.

Intercellular signalling by mechanical forces

Hamant et al. [61] developed a model of plant morphogenesis incorporating
the hypothesis of feedback between CMTs and wall expansion. The stem
of Arabidopsis, similar to the root, has an apical meristem that must pro-
duce cells that either divide and elongate in the major axis, extending the
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2.2. Plant morphology: Why plants need cortical microtubules

2. Intercellular signals

4. Cortical MT array
organization

6. Cell shape

7. Plant shape

1. Environment cue detection

5. Cell wall extension
machinery

within-cell

intercell

(3)

Figure 2.2: The pathway of plant morphology. In this simplified flow chart,
environmental cues are detected, leading to intercellular signalling to indi-
vidual cells, and within-cell signalling to the cell wall insertion machinery
and the CMT array. This results in anisotropic cell growth and division,
establishing organ shape and ultimately overall plant shape. Many steps
are hypothesized based on experimental and theoretical evidence (see main
text). There are many feedback loops, some of which are shown (grey ar-
rows). Grey dashed box indicates intercellular signalling and within-cell
signalling. Green box indicates the focus of this thesis. A detail of the
pathway within the green box is presented in Fig. 6.1.

stem, or differentiate into leaf primordia. By assuming that CMTs in each
cell orient parallel with the principal stress in that cell, Hamant et al. [61]
recapitulated the MT arrays they observed in the shoot apical meristem.
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2.3. Experimental data

Further, by assuming a feedback loop between wall stiffness anisotropy and
CMT direction, the model reproduces details of plant morphology as well
as defects that occur when MTs are perturbed by the drug oryzalin.

Organ shape and plant shape

Finally, the direction of growth and division of individual cells gives rise to
the shape of organs and ultimately the entire plant. Plant morphogenesis has
interested theoreticians for decades [57, 93]. For nontrivial geometries, mod-
elling has demonstrated how organ morphology emerges from local growth
patterns [35, 70, 76]. Modelling has also successfully recapitulated the for-
mation and growth of complex shapes such as cotyledons (the shoot apical
meristem in seedlings, see Fig. 2.1) — where it has provided explanations
for how many cotyledons a plant seed will develop [70] — trichoblasts (spe-
cialized root cells, see Fig. 2.1) and whole Arabidopsis and rice plants [35].

2.3 Experimental data, model parameters and
model behavior

Mathematical modelling contributed to our recent understanding of several
steps in the plant morphogenesis pathway and is poised to do so for CMT
organization. In this section, I describe experimental data that will inform
models.

2.3.1 Representing individual MTs

In plant CMTs, photobleaching studies show that individual tubulin sub-
units remain mostly fixed relative to the cell cortex [120]. However, MTs are
highly dynamic due to subunit turnover (polymerization) at the plus-end,
which randomly switches between states of growth, rapid shrinking [94] and
intermittent pauses [120].

The most common representation of MTs in the context of the plant cell
cortex is the growth-state model. The four or eight parameters (for two-state
or three-state models, respectively), referred to here as MT dynamic insta-
bility parameters or kinetic parameters, have been measured by a variety
of researchers in Arabidopsis cotyledon and root cells [30, 73, 78, 101, 120]
and Tobacco BY2 cells [44], making the growth-state model attractive for
modellers.Eren et al. [48] use a modified version in which the growth and
shrinkage rates are normal random variables, giving the model two addi-
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2.3. Experimental data

tional parameters (standard deviations). These extra parameters have also
been estimated experimentally [78, 120].

VanBuren et al. [128] developed a model for MT polymerization and
catastrophe at the dimer level. In this model, dimers associate onto a 13-
protofilament tube at a rate k0

+ and dissociate at a rate

k− = k0
+exp(−∆G/kBT ) (2.1)

where ∆G is the energy required to remove the dimer from the MT lattice.
This energy is different for GTP-tubulin dimers, which favour growth, and
GDP-tubulin dimers, which favour disassembly. Newly associated dimers
are GTP-tubulin, and they switch to GDP-tubulin through GTP hydroly-
sis at rate khyd. This model has successfully described the action of MAPs
and the effect of forces on MT plus-ends [2, 117]. This dimer-level model
also produces roughly constant growth and shrinkage velocities, and ex-
ponentially distributed transition times. Thus, it can be thought of as a
fine-grained model consistent with the coarse-grained growth-state model
that tells us how the MT-level parameters (velocities and transition rates)
are related to dimer-level parameters (on-rates, bond energies and hydrol-
ysis rate). Consistency between scales is fortunate because the dimer-level
model is computationally taxing to simulate and could not be used to rep-
resent more than a few MTs at a time. Allard et al. [2] (Ch. 3) estimate
the dimer-level parameters that correspond to the MT dynamic parameters
measured in Arabidopsis.

Another model of individual MTs has been developed [50, 90], which is
both fine-grained to the dimer level and computationally simple enough to
simulate on the cell level. This model represents a MT as a linear polymer
of GTP-tubulin or GDP-tubulin subunits, and takes as input parameters
polymerization and depolymerization rates for both states, and a hydrolysis
rate for all subunits except the plus-end subunit. These rates can also be
translated into MT dynamic parameters by formulae [90]. This model is
used in the context of CMT organization by Shi and Ma [121], discussed in
Sec. 2.4.9. Models that aim to explain dynamic instability at the level of
individual dimers continue to be developed [21].

2.3.2 Collision resolutions

Since CMTs are approximately confined to a two-dimensional surface, the
growing plus-end of one MT (herein referred to as the incident MT) can
collide along the length of another (the barrier MT). The collision may result
in several possible outcomes, some of which are depicted in Fig. 2.3. The
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2.3. Experimental data

incident MT may undergo a catastrophe, which we refer to as a collision-
induced catastrophe (CIC) in contrast to spontaneous catastrophe, or it
may continue to grow unperturbed, crossing over the barrier MT. These
outcomes have been reported at predominantly steep angles of collision [44].
At shallow angles of collision, the incident MT may become entrained with
the barrier MT, after which the plus-end grows parallel to the barrier MT,
resulting in a sharp bend in the MT at the site of collision. This phenomenon
is commonly referred to as “zippering” [44], plus-end entrainment [3], or
bundling [48]. Other collision outcomes are possible: the incident MT may
buckle before the barrier [138] or it may cross over the barrier and continue
in a perturbed direction [64]

!
!

!
!" #" $"

Figure 2.3: Collisions between CMTs may result in several possible out-
comes. (a) The incident MT undergoes collision-induced catastrophe. (b)
The incident MT crosses over the barrier MT unperturbed. (c) The incident
MT is entrained by the barrier MT, becoming parallel and bundled to it. A
more biophysically detailed version of this figure is shown in Fig. 3.2

A key insight of Dixit and Cyr [44] was that, upon a collision at angle
θ, the probability of each collision resolution depends on the angle. That
is, three functions pcat(θ), pent(θ) and pcross(θ) determine probabilistically
the collision resolution. These collision resolution probabilities have been
measured experimentally for Tobacco BY-2 cells [44]. Several other studies
inform our knowledge of them, which is summarized in Fig. 2.4. Both experi-
mental measurements and theoretical models [3, 48] sometimes approximate
the full angle-dependent collision resolution probabilities as piece-wise con-
stant functions (Fig. 2.4D). In this simplification, we specify a critical angle
θent. Below θent, the probability of entrainment is a constant pent and the
probability of CIC is zero. Above θent, the probability of CIC is a constant
pcat, and the probability of entrainment is zero. Wightman and Turner [138]
report that pcat = 24% in Arabidopsis pavement cells (which do not form
parallel arrays) and 9% in petiole cells (which do). Ambrose and Wasteneys
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Figure 2.4: Collision resolution probabilities. When two MTs collide, the
incident MT may undergo one of three possibilities, with different proba-
bilities; entrainment (blue), collision-induced catastrophe (red) or crossover
(grey). (A) Measured in Tobacco BY-2 cells [44]. (B) Measured in Ara-
bidopsis elongating cells. The entrainment probability is inferred from Am-
brose and Wasteneys [7] assuming uniformly distributed collisions (see main
text) and catastrophe probability, assumed to be angle-independent, is from
Wightman and Turner [138]. (C) Assumed collision resolution probabilities
used for computer simulation by Tindemans et al. [126]. (D) Piecewise-
constant collision resolution probabilities used as a simplifying assumption
in the computer simulations of Allard et al. [3] (Ch. 4) and Eren et al. [48].
(E) Probabilities computed from a biophysical model in Allard et al. [2]
(Ch. 3). (F) Angle-independent catastrophe-only simulated in Baulin et al.
[16], Shi and Ma [121] and Allard et al. [3] (Ch. 4).
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[7] report full angle-dependent entrainment data, but rather than the prob-
ability a collision will result in entrainment, they report the distribution of
all entrainments, p(θ|ent), which is related to pent(θ) by

p(θ|ent) = pent(θ)p(θ)/
∫
pent(θ′)p(θ′)dθ′. (2.2)

Here, p(θ) is the distribution of collisions, which we may assume to be
uniform. Ambrose and Wasteneys [7] also report CIC is rare. By using
static images from scanning-electron microscopy (which cannot detect CIC),
Barton et al. [14] measure the distribution of entrained MTs, as in Ambrose
and Wasteneys [7]. It is notable that the probability of CIC varies between
measurements from insignificant to dominant. Modelling efforts, discussed
below in Sec. 2.4, also disagree about the significance of CIC.

What is the biophysical basis of these collision resolutions? Because of
continued hydrolysis of the GTP cap, a MT whose growth is stalled has an
enhanced catastrophe frequency, providing a natural mechanism for CIC.
This model is considered in Allard et al. [2] (Ch. 3), which finds that the
probability of CIC is dependent on how densely MTs are anchored to the cor-
tex. For the anchoring density measured in Arabidopsis roots, Allard et al.
[2] (Ch. 3) predicts a catastrophe probability of roughly 10%, suggesting
that the anchor density in Tobacco is lower. Entrainment is more compli-
cated: After a MT is entrained by another, the MTs form a bundle most
likely mediated by members of the MAP65 class of MAPs, which crosslink
adjacent MTs together with a spacing of 20-30 nm [29]. Once bundled,
MTs remain dynamic [120], although possibly with different polymerization
properties [127]. Allard et al. [2] (Ch. 3) developed a model of entrainment
based on an energetic competition between the chemical bonding energy of
MAP65 and the MT bending stiffness. This model, again dependent on the
manner in which MTs are anchored to the cortex, predicts a monotonically
decreasing entrainment probability shown in Fig. 2.4E.

2.3.3 Nucleation and density

In the absence of an organizing centre, nucleation of new MTs occurs through-
out the cortex. As in other eukaryotes, nucleation is mediated by the γ-
tubulin ring complex (γ-TuRC) [100]. There is evidence that nucleation
can occur in the absence of existing MTs [30, 134, 135], and also in a MT-
dependent fashion where γ-TuRC is distributed along extant MTs. New
MTs have been reported to branch off extant MTs at a specific angle of
40◦ from [100, 135], or parallel with [132], the extant MTs. Once a MT
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is nucleated, one hypothesis is that the minus-end of the new MT remains
statically associated with the γ-TuRC for a short time until it is severed by
the MT severing protein katanin [100, 130]. Chan et al. [32] report that the
nucleation is biased toward the plus-end of the extant MT, with no bias to
either left or right sides.

MT-independent nucleation has been modelled by a spatially homoge-
neous nucleation rate, k0

nuc with units (µm−2 min−1). MT-dependent nu-
cleation is modelled by a nucleation angle, θnuc, in addition to a nucleation
rate. Chemically, this rate constant is tri-molecular, thus the rate of new
MTs is proportional to

[tubulin][γ-TuRC][length of extant MTs]. (2.3)

Assuming constant growth velocities for MTs assumes the tubulin concen-
tration is not rate-limiting in polymerization, and so such an assumption can
be made here. There are two other simplifying possibilities: that γ-TuRC is
rate-limiting, in which case the MT-dependent nucleation rate has units of
min−1, or that the extant MTs are rate-limiting, in which case the rate con-
stant has units min−1 µm−1, and the per-minute rate is also proportional
to the total length of all MTs. The MT-dependent nucleation rate has been
measured in Arabidopsis as 0.3 − 1.7 per minute per 103 µm2 [32]. Naka-
mura and Hashimoto [101] measured the MT-dependent nucleation rates
and report ≈ 2× 10−3 min−1 µm−1, reported per micron of extant MT, and
≈ 2× 10−3 min−1 µm−2, reported per square micron of cortex.

If other parameters are well-constrained, the nucleation rate can be back-
engineered from the MT density. The nucleation rate and density have
demonstrated key importance in models [3, 121, 126] and experimentally
[136].

2.3.4 Severing at crossover

Once MTs have crossed over, they may become severed at the crossover
point. Interestingly, the number of severing events at MT crossover points
is high in MT arrays that organize, such as Arabidopsis petiole cells, while
low in cells with disorganized arrays such as leaf pavement cells, with a ratio
of roughly 4:1 [138]. Although severing is necessary for MT organization
[23, 24], it is unclear whether severing at crossover (as opposed to severing
immediately after nucleation) is necessary. This distinction between two
classes of severing is easily achieved in computer simulation — thus, the
inclusion of severing at crossover will be of interest. For this, the rate of
severing, kcut will need to be estimated. As with MT-dependent nucleation,
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MT severing is a bimolecular reaction and can either be rate-limited by
the concentration of crossover-severing agents (presumably katanin [138]),
or is rate-limited by the number of crossovers. The action of katanin has
been shown to be modulated by MT bending in fibroblasts [106], suggesting
another possible class of severing events.

2.3.5 Cell geometry

From a theoretical point of view, CMTs can be simulated on an abstract
plane with no boundaries, or with periodic boundary conditions. This allows
for a theoretical understanding of how intrinsic MT dynamics and MT-MT
interactions alone induce organization. However, real cells have faces with
edges. An elongating root cell can be approximated as a cylinder [3, 48].
What happens to MTs incident upon the top and bottom edges? A basic
assumption, adopted by Allard et al. [3] (Ch. 4) and Eren et al. [48], is that
the edges induce catastrophe. Since then, edge-induced catastrophe has
been observed and measured in leaf cells [9]. A more complete treatment of
cell edges is presented in Ambrose et al. [9] (Ch. 5), discussed in Sec. 2.4.7.

2.3.6 Angle distribution, order parameter and dominant
direction

The amount of order in the CMT array is a key feature to be addressed
by models, and arguably the key property of real CMT arrays. It is de-
scribed by the angular distribution, p(θ), or the length-weighted angular
distribution pl(θ) of CMTs. One or both of these angle distributions has
been measured in Arabidopsis elongating root cells Ambrose and Wasteneys
[7], Burk and Ye [24], Himmelspach et al. [69], Nakamura and Hashimoto
[101] and several other places along the root [67, 125]. The time evolution
of the angle distribution, between 10 min − 240 min after cytokinesis, were
recorded for Tobacco BY2 [45]. These last data measure EB1 comets rather
than MTs directly, so they represent growing plus-ends.

It can be advantageous to describe orientational order with a single num-
ber (typically called an order parameter) rather than an entire distribution,
for example to study the time course of order or how it varies with a given
input parameter. For a population of N microtubules, each with orienta-
tion θi and length li, where i = 1...N , the order parameter S can be defined
in several ways; the classical order parameter for liquid crystals (see Ap-
pendix B) has S = 0 for a completely disordered state and S = 1 for a
perfectly ordered state. Allard et al. [3], Baulin et al. [16], Tindemans et al.
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[126] and Shi and Ma [121] define S in apparently different ways, but they
are all equal (see Appendix B). Eren et al. [48] uses a parameter (referred
to as entropy, E) that is zero for a perfectly array and 5.19 for a perfectly
random array, also discussed in the appendix. The advantage of dominant
direction and order parameter, rather than mean and standard deviation of
p(θ), is primarily due to the periodic nature of angle distribution — a mean
angle of θ = π/2 could mean either MTs predominantly at θ = π/2 or at
θ = 0.

Another key feature of CMT arrays is the time it takes for the array
to self-organize from a particular initial condition. After drug-induced de-
polymerization, the array reforms within 120 min of the initiation of MT
assembly [135]. After disruption of Phospholipase-D, which is required for
MTs to be anchored to the cortex, anchoring returns within 30 min [42], al-
though this increases substantially with temperature. As mentioned above,
the time course for the angle distribution has been measured in Tobacco BY-
2 cells [45], in which the system reaches a steady state within 100 minutes.
Hypothesized mechanisms of organization must generate ordered arrays in
the physiological timescales summarized here, providing another question
models may address.

2.3.7 Mutants and other experimental perturbations

In addition to recapitulating the CMT arrays observed in WT plants, suc-
cessful models must also reproduce the arrays in mutant systems and other
experimental perturbations, described here.

MOR1 and MT dynamics

MOR1 is a MT-associated protein with the ability to alter several dynamic
instability parameters, including increasing both shrinking and growing ve-
locities. It is a homologue of XMAP215, which modifies all MT dynam-
ics parameters in vitro [20] and can be explained at the dimer level [129].
Altering these parameters has a dramatic effect on the CMT array. The
temperature-sensitive mutant mor1-1 has an organized array at permissive
temperature 21◦C, while the dynamic instability parameters are modified
significantly at 31◦C and the MTs become short and disorganized [78, 136].
Simulations in Allard et al. [3] (Ch. 4) confirm that changes in the dynamic
instability parameters are sufficient to explain the loss of organization.
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CLASP, MT anchoring, edge effects

Strong association of CMTs to the cortex is essential for a properly organized
array [7, 42]. Anchoring is believed to involve phospholipase-D [42] and
the CLASP protein [7]. Inhibiting phospholipase-D results in total cortical
detachment and loss of self-organization [42].

In the clasp-1 mutant, where CLASP transcripts are not present, anchor
density is decreased and the distance between anchors is increased [7] — the
free, unanchored length at the plus-end of a growing MT appears to entrain
more readily in these mutants, as the free end can explore more space and
be entrained with less curvature. Furthermore, the clasp-1 mutant’s array,
measured in [7], is more highly ordered (that is, with fewer deviations from
the dominant orientation) than the WT array. However, CLASP may have
other roles in the cell other than modifying anchoring, discussed in Sec. 2.4.7.

Katanin

In the fra2 mutant of AtKTN1, MT severing is inhibited, which delays [23]
or inhibits entirely [24] MT organization. The angle distribution in fra2 has
been measured [24]. Overexpression of katanin destabilizes the MT array
[122]. The katanin mutant results in disorganized array [101], for which the
angle distribution has been reported.

Nucleation and helicity

Branch-form MT-dependent MT nucleation [32, 100] consistently occurs at
around 40◦. Two mutants of members of γ-TuRC modify this angle. The
spr3 mutant [101] perturbs the tightly controlled nucleation from 40± 7◦ in
WT to 50± 12◦. This results in arrays that are organized with roughly the
same order parameter, but a dominant direction 10◦ away from the trans-
verse direction, resulting in a left-handed helical pattern [101]. The amiR
mutant [81] has a decreased nucleation angle with a bimodal distribution
peaked at 14◦ and 30◦ in pavement cells. Pavement cells typically produce
MT arrays that are disorganized, but form more parallel arrays in the amiR
mutant [81]. It will be important to measure the angle distribution in elon-
gating root cells of amiR.

The nucleation mutants above are part of a larger class of mutants whose
arrays are self-organized but with a dominant direction angled with respect
to the transverse direction [72]. In the majority of these cases, the organ
comprised of cells with helical CMT arrays are also twisted, but with op-
posite handedness, further evidence of the link between CMTs, cell wall
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elongation and organ structure. Many of these mutants involve the auxin
pathway. In these cases, what is the input that could generate helical out-
put?

2.4 Mathematical models of CMT organization

2.4.1 Classes and aims of mathematical models

There are two questions that cell-scale models can help elucidate: (1) What
input parameters, in particular MT dynamic parameters, collision resolution
probabilities and nucleation rules, result in self-organization of the array,
in a theoretical cell? And (2) of the input parameters that result in self-
organization, which are actually the primary determinants of organization
in plant cells? The answer to the second question will involve matching
model outputs to mutants and other experimental perturbations.

Computer simulation, individual-based models and mean-field
models

Modelling efforts to date can be classified into two overlapping and non-
exhaustive classes: individual-based models and mean-field models. Individual-
based models (also called rule-based or agent-based models), in which each
MT or MT segment is represented as an individual, and rules for individual
dynamics and interactions determine the evolution of the system. Computer
simulation is used to find the patterns that result from these rules.

The other class represents the population of MTs as a density p(x, y, θ, l, t)
at location (x, y) with orientation θ and length l. The dynamics are encoded
in a partial differential equation (PDE) or integro-PDE, which describes how
p(x, y, θ, l, t) changes in time. Because the density approach averages over
a population of individual MTs, these models are called mean-field mod-
els [77]. Since the full, spatially-dependent equation is too cumbersome for
analysis, researchers typically assume the MT array has approximately the
homogeneous density at all locations, and use p(θ, l, t) instead. I elaborate
on the spatial homogeneity assumption in Appendix A. In the study of
coarsening systems such as liquid crystals (see Sec. 2.4) and other aggrega-
tion phenomena in biology [96, 98], mean-field methods have been greatly
successful. However, questions remain regarding whether the spatial uni-
formity approximation is valid for extended bodies such as MTs, which act
non-locally [16].
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The advantage of computer simulation of individual-based models [3, 16,
48, 121, 126] is that it accounts for stochasticity, can accommodate rules of
almost unlimited complexity, and provides output that visually recapitulates
microscopy images. However, it is computationally taxing (simulating a
population of 103 MTs for a 103 min can take a day of computing time).
Moreover, input parameters need to be fully specified and it is difficult to
use the output from one set of input parameters to extrapolate the behaviour
of another set of input parameters.

In this sense, the mean-field models can provide deeper insight. Their
disadvantage is that they require drastic simplification of interaction rules,
and simplifying assumptions such as the spatial-homogeneity assumption
described above. The most powerful modelling occurs when computer sim-
ulation is combined with mean-field modelling, as in Tindemans et al. [126]
and Shi and Ma [121].

2.4.2 Zumdieck et al. [143]: Liquid crystals

Early theoretical work on CMT organization [84, 143] built on the wealth of
understanding of self-organization in liquid crystal systems. A liquid crystal
[41] is a phase of molecules that are typically rod-like. At low temperatures,
these molecules pack closely together, resulting in an array that has orienta-
tional order, even without bonds between the molecules. Thus, the system
exhibits crystal properties (orientational order) as well as liquid properties
(the absence of fixed molecular bonds). The concept of entropy in liquid
crystals [108] may have implications for CMTs — there are many more ways
to arrange N rods in a given volume if they are aligned, as opposed to if they
are randomly ordered. Thus, neglecting energetics, the system is much more
likely to be ordered. When liquid crystals display orientational order, they
are referred to as nematic. A seminal result of statistical physics is that as
temperature is decreased, liquid crystals transition from an isotropic phase
to a nematic phase [41]. Liquid crystals are different from CMTs in that
liquid crystals migrate by translation and rotation, as opposed to through
treadmilling, and do not dynamically change in length. Zumdieck et al.
[143] developed a model of CMT organization, assuming CMTs are mobile
and diffusing in an overdamped fluid. Since then, evidence has accrued that
that MTs are strongly anchored to the cortex and migrate predominantly
by treadmilling [120]. The absence of this anchoring inhibits organization
[42]. However, much current theoretical work makes use of the insight and
vocabulary of nematic liquid crystals.
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2.4.3 Dixit and Cyr [44]: Angle-dependent collision
resolutions

In the pioneering paper that first emphasized the importance of angle-
dependent collision outcomes, Dixit and Cyr [44] carried out simulations
including collision-induced catastrophe (CIC) as well as plus-end entrain-
ment (which they refer to as zippering). However, given the computational
difficulty of the problem, the authors were only able to consider at most 20
MTs for 10 minutes, and a statistically meaningful interpretation is difficult
to extract from their results. Further simulations by one of the authors in
Eren et al. [48], discussed below, harnessed more powerful computational
techniques.

2.4.4 Baulin et al. [16]: Oblique domains for simplified MT
dynamics and collision-induced pausing

Baulin et al. [16] simulated a simplified model in which MTs were repre-
sented with a single state: their plus-end grows at a constant velocity, while
their minus-end shrinks at a (slower) velocity. This single-state model of
a MT is a limit of the two-state model [3]. Collisions resulted in the in-
cident plus-end pausing until either the barrier had moved out of its way,
or the incident MT’s minus-end has depolymerized it completely, indepen-
dent of angle. The authors found order emerged in oblique domains. A key
contribution of Baulin et al. [16] was that even small external biases in inter-
actions can tune the dominant direction of the resulting array. Baulin et al.
[16] also developed a mean-field theory, however it was unable to capture
the behaviour of even their simplified model. They hypothesize the incon-
sistency is due to the mean-field assumption of spatial homogeneity, that
is, “disagreement is mainly due to the impossibility for a two-dimensional
system to be at the same time considered as anisotropic and homogeneous.”

2.4.5 Tindemans et al. [126]: Mean-field analysis and
simulation

The first mean-field model to capture angle-dependent collision resolutions,
including both collision-induced catastrophe and entrainment, was devel-
oped by the group of Mulder [65, 126]. MTs were represented by the two-
state model, and nucleation was assumed to occur uniformly in space, in-
dependent of existing MTs. The mean-field model made two major contri-
butions. First, that the MT dynamics parameters only affect organization
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through the function

G =
(

2vpgv
p
s

k0(vps + vps)

)1/3
vpgfcat − vpsfres

vpsv
p
g

(2.4)

meaning two sets of MT dynamics parameters with the sameG have identical
self-organization properties. G depends on the nucleation rate k0, which
must be large enough to ensure high MT densities so that collisions occur
frequently. Second, a critical value of G (a bifurcation point), called G∗, was
found, where if G < G∗, the system exhibits no organization1. Remarkably,
the bifurcation point depends only on the probability of catastrophe, pcat(θ),
and not at all on entrainment. Further, as long as pcat > 0 for some θ, the
bifurcation point is invariant to, for example, halving or doubling pcat. In
their mean-field theory, if a system does self-organize, the degree to which
it orders in steady state (its S-value) depends on the magnitude of pcat, as
well as entrainment. This predicts that in the absence of collision-induced
catastrophe, entrainment alone cannot give rise to self-organization.

The authors also carried out computer simulation, which, for simplified
collision resolution probabilities, was found to agree with their mean-field
theory. This suggests the spatial homogeneity assumption is appropriate,
in contrast to the conclusions of Baulin et al. [16]. However, they did not
simulate entrainment probabilities that decrease monotonically with angle,
as observed experimentally [44] and were found to be sufficient for self-
organization in other computer simulations [3, 48].

How does the parameter G∗ relate to piece-wise constant collision reso-
lution probabilities used in [3, 48, 121]? If catastrophe occurs independent
of angle with probability pcat, then G∗ = (pcat/3)1/3 > 0, in which case the
authors find that for any nucleation rate and any pcat > 0, order will never
emerge, in contrast to the findings of Baulin et al. [16], Allard et al. [3]
(Ch. 4) and Shi and Ma [121].

2.4.6 Allard et al. [3] (Ch. 4): Simulation matching mutants

Computer simulations using two-state and three-state models, with collision
resolution probabilities considering both angle-dependent collision-induced

1The bifurcation point depends on the function pcat(θ) by

G∗ = (2ĉ2)1/3

„
ĉ0
2ĉ2

+ 1

«
(2.5)

where ĉ0, ĉ2 are the first two Fourier coefficients of the function pcat(θ)|sin θ|.
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catastrophe and angle-dependent entrainment, were carried out by Allard
et al. [3] (Ch. 4). This study found that entrainment alone was sufficient
for self-organization, with or without collision-induced catastrophe, while
collision-induced catastrophe alone is insufficient when using physiological
parameters from [44, 78, 120]. For uniform nucleation, the rate was taken
that produced a steady-state MT density comparable to experiment, as de-
scribed in Sec. 2.3.3. For collision resolutions, Allard et al. [3] (Ch. 4) as-
sumed that above a critical angle θent, collision-induced catastrophe occurs
with probability pcat, while below, entrainment occurs with probability pent.
Thus all details of the functions pcat(θ) and pend(θ) are reduced to three pa-
rameters (pcat, θent, pent). This study found that (θent = 0.7 rad, pent = 0.9)
produced self-organization, while θent = 0 rad, pent = 0) failed to self-
organize for any pcat.

Allard et al. [3] (Ch. 4) also simulated MT-dependent branched nucle-
ation. In the absence of uniform nucleation, this produced arrays that were
sparse, suggesting that MT-dependent nucleation cannot be the only nucle-
ation pathway.

The biological relevance of Allard et al. [3] (Ch. 4) was explored by us-
ing input parameters from the mor1-1 and clasp-1 mutants. In the mor1-1
case, the simulations recapitulated the loss of self-organization as the MT
dynamic parameters were changed. In the case of clasp-1, which modified
the entrainment probabilities, the simulation did not recapitulate the slight
increase in ordering. The primary role of MOR1 as a modifier of MT dy-
namic parameters is well-supported by its homologues both in other in vivo
systems and biophysically [129], while the primary role of CLASP may not
be to modify the entrainment probabilities. Further studies of CLASP have
generated a new hypothesis for its primary role, described in the next sec-
tion.

2.4.7 Ambrose et al. [9] (Ch. 5): Dynamics on polyhedral
cells

Insight into the effects of cell edges comes from a recent study by Ambrose
et al. [9] (Ch. 5), in which the CLASP protein was found to preferentially
localize to specific cell edges at different points in a cell’s development. Ev-
idence suggests that CMTs suffer edge-induced catastrophe at sufficiently
high-curvature edges, and that CLASP allows CMTs to bypass edges wher-
ever it localizes.

Including this in the computer simulations of Allard et al. [3] (Ch. 4), we
found that modulating the probability of edge-induced catastrophe produces
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arrays that are either transverse, longitudinal or mixed. One limitation of
the simulations is that the probability of edge-induced catastrophe used were
taken from experimental measurements in leaf pavement cells as opposed to
root cells, which exhibit the arrays being simulated.

2.4.8 Eren et al. [48]: Dynamics on cylindrical cells

Eren et al. [48] performed computer simulations of MTs on the surface of
cylinders. In agreement with Allard et al. [3] (Ch. 4), they found entrain-
ment sufficient, with or without CIC, and CIC to be insufficient to generate
an ordered array. Simulations of the mor1-1 MT dynamic instability param-
eters resulted in loss of self-organization. When they increase the critical
entrainment angle to θent = 60◦, self-organization was slightly reduced as in
Allard et al. [3] (Ch. 4).

A novel aspect of Eren et al. [48] are attempts to address the helical
arrays observed experimentally. Catastrophe-inducing top and bottom edges
promote a transverse array with no polarity — approximately equal number
of MTs pointed in the dominant direction as were antiparallel to it. They
found that a mixture of branch-form and background nucleation leads to
an array with polarity, although the direction of polarity was found to be
random. If the branch-form is biased towards either the right or left of
the extant (mother) MT, the dominant direction depends on the initial
conditions: de novo, the arrays became helical but with randomly either
left- or right-handedness, whereas from an initially transverse, polarized
array, the result is emergence of right- or left-handedness, depending on the
direction of initial polarity and the nucleation bias.

2.4.9 Shi and Ma [121]: Catastrophe in a simplified MT
model

Shi and Ma [121] developed a computer simulation and mean-field theory
for organization. Instead of the Dogetrom-Leibler models, they use the
linear dimer-level model of Flyvbjerg et al. [50]. Collisions result in the
inability to polymerize, which soon result in catastrophe unless the barrier
MT depolymerizes out of the way. This is approximately equivalent to
collision resolution probabilities with pcat(θ) = 1.

Shi and Ma [121] find that, as the polymerization rate and MT den-
sity are varied, the system exhibits three phases: isotropic (disorganized), a
highly nematic (ordered) and less nematic phases. Their mean-field model
also demonstrates three phases. In contrast to Tindemans et al. [126], as
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parameters are varied slowly, the order parameter can either increase grad-
ually, or suddenly and irreversibly. Irreversibility as an input parameter is
varied is known as bistability since it corresponds to two (or more) stable
steady states existing for the same set of input parameters.

2.5 Outlook: Branching of new questions from
existing ones

The most striking open question emerging from the modelling literature
concerns the significance of the two dominant collision resolutions: collision-
induced catastrophe and entrainment. The question of the significance of
CIC is duplicated by the two primary questions of mathematical modelling
described in Sec. 2.4.1 (What is required theoretically to self-organize? And
which of these possibilities is exploited by real plants?). There are thus four
possibilities.

1. If CIC is the dominant promoter of organization, as suggested by the
results of Tindemans et al. [126], then either

(a) experimental measurements of CIC in Arabidopsis underestimate
CIC, or,

(b) CIC is indeed rare and an as-yet-unidentified factor is promoting
organization. The unidentified factor could be MT severing [138]
or edge interactions [9, 48].

2. If entrainment is the dominant promoter of organization, as suggested
by the results of Allard et al. [3] (Ch. 4) and Eren et al. [48], and

(a) entrainment alone is sufficient and experimentally observed, as
reported, then theory and experiment are in agreement and fur-
ther models will be modifications of this base model.

(b) The fourth possibility is that entrainment is theoretically suffi-
cient and CIC is not, but entrainment is found to be biologically
unnecessary. At this point, novel hypotheses for organization will
need to be invoked.

To distinguish between possibilities (1) and (2), further computer simula-
tions need to be carried out to bridge the gap between disagreeing simu-
lations. Also, experiments need to be carried out to further constrain the
parameters such as nucleation rates. In either case (1) or (2), to distin-
guish between (a) and (b), the most direct experiments would turn on and
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off entrainment and CIC independently, possibly by controlling MAP65 (to
perturb entrainment) and GTP hydrolysis (to perturb CIC). Such experi-
ments are riddled with difficulty.

It is possible that disagreement can be explained by the bistability ob-
served in Shi and Ma [121]. The mean-field work of Tindemans et al. [126]
does not preclude the existence of a self-organized steady-state with entrain-
ment alone, but only that it cannot be generated from a perfectly homoge-
neous, isotropic initial state. It could be that the random fluctuations of a
finite number of MTs effectively mean that plants and computer simulations
do not start from a homogeneous, isotropic initial state. It could also be
that some other element causes an initial anisotropy, which is exploited by
entrainment to further align the array.

The ultimate validation of models lies in recapitulating phenomena, in-
cluding mutants and experimental perturbations. This has been accom-
plished for the mor1-1 [3] mutant, fra2 mutant [48] and clasp-1 mutant [9],
and remains to be accomplished for spr1 and γ-tubulin mutants amiR and
spr3. However, once validated, the ultimate goal of models is to generate
novel predictions. These new predictions represent new hypothesis and can
spurn new experiment and theory. For example, Eren et al. [48] have iden-
tified three inputs that result in helical arrays. Experiment must now be
used to identify which is used by nature.
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Chapter 3

Biophysical basis of cortical
microtubule interactions2

3.1 Introduction

Two scales of questions about CMT self-organization remain to be eluci-
dated. First are cell-level questions: How do molecular interactions between
MTs give rise to cell-scale order? How do changes in the molecular inter-
actions affect self-organization? This aspect has received recent attention
Allard et al. [3] (Ch. 4), [16, 44, 126, 143]. These models have assumed phe-
nomenological descriptions of MT-MT interaction. A second scale of ques-
tions is molecular: how do interactions such as entrainment and collision-
induced catastrophe occur? Why do they occur at different frequencies for
different collision angles? How are MTs held to the cortex and how does
this anchoring affect MT-MT interactions?

In this chapter, I present a mechanochemical model of CMTs to ad-
dress the latter questions. The first section introduces a kinetic model for
MT anchoring to the cortex, which allows us to infer chemical rate con-
stants from experimentally measured free lengths. This model is used in
subsequent sections of MT-MT interactions. The second section introduces
mechanical models for collision-induced catastrophe, crossover and plus-end
entrainment. For collision-induced catastrophe, a dimer-level model leads
to an estimate of its probability, Pcat. For crossover we present an energetic
model independent of details of the crossover pathway. For entrainment, we
present an energetic model as well as a dynamic (torque-based) model. In
the final section we use the energetic models of crossover and entrainment
in an adiabatic approximation to compute probabilities for these collision
resolutions. Through these models, entrainment is explained by a compe-
tition between crosslinkers, which tend to bundle adjacent MTs, and the

2A modified version of this chapter has been published in Allard, Ambrose, Wasteneys
and Cytrynbaum, “A mechanochemical model explains interactions between cortical mi-
crotubules in plants”, Biophysical Journal 99 p.1082, 2010 (see bibliography [2]). The
introduction has been shortened here.
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bending stiffness of the incident MT, which opposes entrainment. We find
this energetic competition is sufficient to explain the angle-dependence of
entrainment and crossover.

3.2 MT-cortex anchoring

While the molecular identity of the anchor linking MTs to the cortex is
unknown, the process involves phospholipase-D [42, 53] and the CLASP
protein [7]. One or both of these may form the physical anchor. MTs
in CLASP null mutants remain attached to the membrane, although with
longer free ends [7]. Here, we refer to the physical anchor without speculation
regarding its components. As a MT grows, the anchor protein chemically
attaches and detaches along its length. If the MT were a long, stationary
rod adjacent to the membrane, and anchors attached with rate constant kon

(with units µm−1 min−1) and detached with rate koff (in min−1), then the
density of attachments, a(x, t), would be governed by the equation

∂a/∂t = kon − koffa. (3.1)

Here we assume that the binding rate kon is uniform along the length
of the filament. In reality, the free plus-end can fluctuate away from the
membrane, in principal reducing kon near the tip compared to near the an-
chored regions, where the filament is always close to the membrane. How-
ever two facts suggest that nonuniformity of kon is insignificant. First,
the persistence length of a MT is millimeters, whereas the free length is
typically 3µm, so thermal undulations are small. Second, below we esti-
mate kon ∼ 0.3 min−1 µm−1, suggesting that anchor attachment is reaction-
limited as opposed to diffusion limited, thus fluctuation of the filament is
not the bottleneck. Note that the anchor kinetics may be different tens of
microns behind the plus-end, where the MT is older and other MAPs may
act. Our model is only concerned with anchors near the plus-end. Con-
sistent with this, the data we use below to estimate the kinetic rates only
incorporates anchor spacings at the tip of the MT.

In steady-state, the density of anchors is a = kon/koff ≡ ac. This den-
sity corresponds to a spatial Poisson process [115], and the distance be-
tween anchors, L, would have cumulative probability distribution G(l) =
1 − exp (−acl) (that is, G(l) is the probability that L < l). Thus, free
lengths would be exponentially distributed. However, if the plus-end of the
MT is growing at constant velocity vpg , then the density of anchors is lower
near its growing tip, since this region of MT has not been present for as
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long as the region further back. The anchor density is governed by same
differential equation, Eq. 3.1, but with boundary condition a(vpgt, t) = 0.
The solution is a(x, t) = ac(1 − e−koff(t−x/vp

g )) or, as measured a distance
l = x−vpgt from the growing tip, a(l) = ac(1−e−λl) where λ ≡ koff/v

p
g . This

varying density gives rise to a non-homogeneous Poisson process [115], and
the distance between the growing tip and the first anchor, L, is a random
variable with cumulative density

P (L < l) = G(l) = 1− exp
(
−
∫ l

0
a(l′)dl′

)
. (3.2)

The probability density, g(l), is found by differentiating Eq. 3.2. There are
two competing length scales, the mean spacing in absence of growth, a−1

c

and the length of growth before detachment, λ−1.
The free length distribution has been experimentally measured by Am-

brose and Wasteneys [7] in both WT cells and the clasp-1 mutant and is
shown in Fig. 3.1. We estimate ac and λ in the probability density by fitting
Eq. 3.2 to the data using the method of maximum likelihood and a boot-
strap. The fit is shown in Fig. 3.1. Note that the exponential distribution
predicted by the stationary model would not reproduce the nonzero maxi-
mum seen in the experimental data, while the model including growth does.
Furthermore, given vpg = 3.5µm/min [78], we can back-engineer the kinetic
rate constants near the tip. These are shown in Table 3.1.

The small detachment rate predicts that once an anchor has attached,
it will be, on average, weeks before it detaches — anchoring appears to
be an effectively irreversible process. However, near the tip, the density
of anchors is limited not by dissociation but by the growth of the MT tip.
Further back, the anchor density will be limited by MT catastrophe. Note
we are modelling growing MTs only, and the experimentally observed free
lengths are from growing MTs, thus the rates in Table 3.1 are only relevant
while the MT is in the growing state.

kon ( min−1 µm−1) koff ( min−1)
WT 0.34± 0.13 (5.5± 1.3)× 10−5

clasp-1 0.16± 0.08 (4.5± 1.0)× 10−5

Table 3.1: Chemical kinetic rate constant for the anchor protein in WT and
clasp-1 mutants.
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Figure 3.1: The free lengths L from the MT tip to the last anchoring site.
Experimental data from Ambrose and Wasteneys [7]. The nonhomogeneous
distribution predicted by Eq. 3.2 provides qualitative agreement for both
WT and clasp-1 data.
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3.3 MT-MT interactions

In this section, we consider the interaction between two MTs after colli-
sion, in which the growing plus-end of an “incident” MT collides along the
length of a “barrier” MT. There are several possible resolutions to a colli-
sion. The incident MT may switch to the shrinking state, which we refer
to as collision-induced catastrophe. It may cross over the barrier MT and
continue growing, [64] or it may become entrained. We consider these three
resolutions, depicted in Fig. 3.2, neglecting other possible resolutions, such
as buckling before the barrier or becoming severed at the crossover point
[138].

In the following, we assume the incident MT is colliding with the barrier
at collision angle θ ∈ [0, π/2] where θ = 0 for parallel MTs and we ignore
the polarity of the barrier MT. The distance from the collision site to the
closest anchor on the incident MT is L.

The remainder of the paper is organized as follows. Anchoring and catas-
trophe are slow processes and effectively irreversible but mechanical relax-
ation and MAP crosslinking are fast and reversible. When a collision occurs,
it is resolved as soon as an anchor attaches, either on the distal side of the
target on in an entrained configuration, or if the incident MT catastrophes.
The catastrophe probability is described by a dimer-level model we describe
in the next section.

We then consider the conditional probabilities of crossover and entrain-
ment, given no catastrophe occurred during the collision (either “natural”
catastrophes or collision-induced catastrophes). The incident MT has a
large configuration space to explore thermally, including some configura-
tions where its tip is far from the membrane, some where it is crossed over
the barrier and close to the membrane, and finally, configurations where
it is entrained by the barrier MT. Assuming these are explored in quasi-
equilibrium, at the moment of anchoring, the probabilities of being in a
crossover configuration or an entrained configuration only depend upon the
energies of those states. Therefore, we compute the energy of crossover con-
figurations, and the energy of entrained configurations. To be certain that
the entrained configurations are indeed explored in quasi-equilibrium, we
present a mechanistic (torque-based) model of entrainment describing how
an incident MT is progressively entrained by a barrier MT and the action
of crosslinking MAPs. In the final section, we use the crossover and en-
trainment state energies to compute overall angle-dependent probabilities
of entrainment and crossover.
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Figure 3.2: Three possible collision resolutions. The incident MT collides
with a barrier at an angle θ and with free length L. Possible resolutions are
(A) catastrophe, in which the incident MT begins shrinking, (B) crossover,
in which the incident MT develops a small bend to overpass the barrier
and continue growing unperturbed, and (C) plus-end entrainment, in which
the incident MT becomes entrained by the barrier via crosslinking proteins
(orange online). MTs are shown in black, while anchors are shown as green
squares.

3.3.1 Collision-induced catastrophe

Catastrophe is the spontaneous switch of the MT plus-end from a state in
which growth dominates, to a state in which shrinkage dominates, due to
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the loss of the polymerization-promoting GTP-tubulin cap. VanBuren et al.
[128] developed a model for MT polymerization and catastrophe at the dimer
level. In this model, dimers associate at a rate k0

+ and dissociate at a rate
k− = k0

+exp(−∆G/kBT ) where ∆G is the energy required to remove the
dimer from the MT lattice. This energy is different for GTP-tubulin dimers,
which favour growth, and GDP-tubulin dimers, which favour disassembly.
Newly associated dimers are GTP-tubulin, and they switch to GDP-tubulin
through GTP hydrolysis at rate khyd.

We fit the bond energies and hydrolysis rate parameters in the model
of VanBuren et al. [128] to the growth rate, shrinkage rate and catastrophe
rate of Arabidopsis at 31C from Kawamura and Wasteneys [78] and found
parameters listed in Table 3.2. These parameters are comparable to the
parameters reported in VanBuren et al. [128]. We modify the model to con-
sider collision with a barrier MT as follows. A growing MT that encounters
a barrier will have the same khyd and k−, but for protofilaments in contact
with the barrier, k+ will be modulated by a prefactor α, that is, k+ = αk0

+.
We compute α as follows. When the incident MT encounters the barrier,
its tip is undergoing thermal fluctuations and is a distance ρ away from its
equilibrium position. Its energy, Ejump(ρ), is the minimum of the linear
elastic rod energy,

E =
B

2

∫ L

0
κ(s)2ds (3.3)

where B is the bending modulus of a MT, L is the MT’s free length, κ(s) is
the curvature, and arclength s of the incident MT is measured from the last
anchor. For small deformation, κ(s) ≈ y′′(x) where y is the height of the MT
above the membrane and x is distance along the membrane. From this we
obtain the familiar beam equation y(iv)(x) = 0 for x ∈ (0, L), where L is the
distance from the anchor to the barrier and we measure from the anchor. We
use boundary conditions y(0) = y′(0) = 0, y′′(L) = 0 and y(L) = ρ and find
Ejump(ρ, L) = 6Bρ2/(25L3). The prefactor α, which depends on L, is the
probability that thermal fluctuations allow the incident MT tip to clear the
barrier, allowing the addition of a subunit, as opposed to subunit addition
being blocked by the barrier (see Fig. 3.3A). We compute the fraction

α(L) =

∫∫
clear e

−Ejump/kBTdA∫∫
clear e

−Ejump/kBTdA+
∫∫
block e

−Ejump/kBTdA
(3.4)

where the “block” region is 0 < y < d and the “clear” region is y > d, both
regions with infinite width in the direction parallel to the barrier, ρ is the
radial coordinate and d is the diameter of a MT. In choosing to integrate
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3.3. MT-MT interactions

over the tip’s location only, we implicitly ignore higher modes of bending in
the free length of the MT. These higher modes have energies that increase
quadratically with mode number. This means the probability of accessing
the same tip deflection through, for example, the third mode (only odd
modes result in tip deflection) has probability exp(−32) ≈ 10−4. The first
mode reproduces the behaviour of interest. Buckling of the MT is irrelevant
here, since the MT may relax by surpassing the barrier.

Parameter Value
k0

+ ( s−1 µm−1) 4
c (µM) 5
∆GLat (kBT ) 10
∆G?Long (kBT ) 6.8
∆Gkink (kBT ) 6
khyd ( s−1) 1.3

Table 3.2: Parameters used in the dimer-level model modified from VanBu-
ren et al. [128].

For α = 1 (no barrier), we simulate MT growth in this way 1000 times
and observe that the probability of still being in the growth state Pg decays
exponentially as a function of space. That is, fitting to ∂Pg/∂x = −r(x)Pg,
we find a constant r(x) = r0. The catastrophe rate is fcat = r(x)v̄pg =
0.2 min−1 by construction. If α � 1, Pg exhibits a rapid drop near the
barrier, shown in Fig. 3.3B, which corresponds to a temporary increase in
catastrophe rate near the barrier. The width of the drop represents MTs that
either impact the barrier, and depolymerize GTP dimers before undergoing
catastrophe, or MTs that overcome the barrier, but have a “weakened” GTP-
cap, and thus undergo a collision-induced catastrophe beyond the collision
site. As α → 0, the r(x) resembles a delta function. The width of the
drop depends on how the precise time of catastrophe is defined. As in
VanBuren et al. [128], we use the moment when the MT has lost its entire
GTP cap, after which we find the MT always enters the shrinking state. To
compute a catastrophe probability independent of the arbitrarily-defined
beginning and end of the collision, we plot Pg on a log-linear plot and take
the drop, Pcat(α), to be the difference in y-intercepts of the line before
and after the collision site, as shown in Fig. 3.3B. Note this quantity is
distinct to the experimentally measured probabilities of catastrophe [44,
138], which may include spontaneous catastrophes. Using the relationship
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between α and L from Eq. 3.4, we compute the probability of collision-
induced catastrophe as a function of the free length L. Convolving this with
the anchoring model Pcat =

∫∞
0 Pcat(L)g(L)dL, we find Pcat = 0.03 for WT

Arabidopsis. A low probability agrees with experiments on petiole cells of
Arabidopsis where the probability of catastrophe during a steep collision is
9% [138]. However, a study of Tobacco BY-2 cells [44] reported collision-
induced catastrophe in up to 50% of collisions. Interpreting this in light
of our model, it suggests differences in anchoring properties between cell
lines: Denser anchors would disfavour crossover and entrainment, favouring
catastrophe. As a demonstration of this concept, increasing the anchor
attachment rate kon to ten times the value we found for Arabidopsis, lead
to a mean length of 1.2µm, a third of WT. This tighter anchoring leads to
Pcat = 0.47, roughly in agreement with Dixit and Cyr [44].

In our model, dimer addition at any protofilament requires the entire
MT tip to fluctuate above the barrier. In reality, heterogeneity in the way
each protofilament confronts the barrier may lead to the incident MT getting
stuck near the cortex, or partially or entirely above the barrier. These effects
are neglected in our model. We also assume all protofilaments encounter the
barrier at the same depth in the lattice, which neglects the cylindrical shape
of the barrier as well as the slight offset of protofilaments in a B-lattice
[128]. To test the sensitivity on the latter assumption, we ran simulations in
which protofilaments encountered the barrier at different depths and found
the effect to be weak. A more detailed model of protofilament and barrier
geometry may explain the strong angle-dependence observed experimentally
in Dixit and Cyr [44], but would be computationally taxing.

3.3.2 Crossover

For crossover, the MT must bend to surpass the barrier. Note that in many
eukaryotic cells, the fluid membrane may undulate, allowing a hypotheti-
cal MT to crossover without bending. In the plant case, turgor pressure
and the stiff cell wall, with a Young’s modulus of several hundred pN/nm2

[33], render membrane undulations insignificant. The configuration of the
incident MT is determined by minimizing the linear elastic rod energy, sim-
ilar to Eq. 3.3, except with x ∈ (−L, 0) ∪ (0, l) and boundary conditions
y(−L) = y′(−L) = y(l) = y′(l) = 0, and y(0) = d where d is the diameter
of a MT. We find the energy associated with crossover to be

Ecross(l, L) =
3Bd2(L+ l)3

L3l3
. (3.5)
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Figure 3.3: Collision-induced catastrophe. (A) Two MTs approaches a bar-
rier MT. Thermal fluctuations at their tips allows it to either clear the bar-
rier (bottom incident MT), otherwise it is temporarily blocked (top incident
MT). Anchors are shown as green boxes. (B) Probability of being in the
growth stage, i.e., that catastrophe has not yet occurred, versus distance to
the barrier MT, for various values of α (log-linear scale). The drop between
the pre-barrier curve and the post-barrier curves (shown as dashed lines for
some α) provides the probability of collision-induced catastrophe.
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3.3. MT-MT interactions

Note that there are many pathways to this final state, some of which involve
prolonged contact between the barrier and incident MT [138]. However,
energetically, the final state of these distinct pathways is assumed to be the
same.

3.3.3 Plus-end entrainment

While plus-end entrainment (commonly called “zippering”) has been re-
ported frequently [7, 44, 120], its molecular mechanism remains unclear.
After a MT is entrained by another, the MTs form a bundle most likely me-
diated by members of the MAP65 class of MAPs, which crosslink adjacent
MTs together with a spacing of 20−30 nm [29]. Once bundled, MTs remain
dynamic [120], although possibly with different polymerization properties
[127]. In our model, depicted in Fig. 3.2C, we refer to a crosslinker protein
that preferentially bundles adjacent MTs with a rest length of l0 between
MTs, and a spacing of δ between adjacent crosslinkers. The chemical bond-
ing energy gained by the crosslinker associating with two MTs is µX . The
crosslinker is stiff, with a Hookean spring stiffness of kX ∼ 10−2 pN/ nm
[36].

In this section, we present a model for how an incident MT can be
progressively bundled into a parallel orientation with the barrier MT, as
subsequent crosslinkers provide a torque reorienting its plus-end. Its final
configuration will minimize the energy

EME =
B

2

∫ l+L

0
κ(s)2ds+

kX
2δ

∫ lX

0
y(s)2ds. (3.6)

where y is the distance from the incident MT to the barrier MT, lX is the
length of incident MT that is crosslinked, so nX ≡ lX/δ is the number of
associated crosslinkers. In this case, it is convenient to measure arclength s
of the incident MT back from its plus-end. On the length scale of interest,
L, Eq. 3.6 can be nondimensionalized to

Ẽ =
∫ 1

0
(ỹ′′(x̃))2dx+K

∫ r

0
ỹ2dx̃ (3.7)

where r = lX/L and K = (kXL4)/(δB) ≈ 103 using the parameters in
Table 3.3. The mechanical energy in the crosslinked region is 1/K relative
to the energy in the MT bending energy, so in the region of MT that is
crosslinked, deflection is insignificant. Thus we restrict our treatment to
the uncrosslinked region. For small collision angles, the minimal energy is

42



3.3. MT-MT interactions

EME = 2Bθ2(l∗2 + 3l∗L+ 3L2)/l∗3 where l∗ = L+l−lX . For larger collision
angles, we minimize Eq. 3.6 numerically.
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Parameter Meaning Value Reference
Parameters used in computing entrainment probability
B Bending modulus of MT 3− 20× 106 pN nm2 [129]
d Width of MT 25 nm [29]
δ Mean spacing between crosslinkers 35 nm [29]
µX Chemical bonding energy of crosslinker 14kBT [137]
vpg MT growth velocity 3.5µm/min [78]
Other parameters
fcat Free-space catastrophe rate 0.2 min−1 [78]
l0 Mean spacing between crosslinked MTs 35 nm [29]
kX Crosslinker spring constant 10−3 − 10−2 pN/ nm [36]

Table 3.3: Parameters used in the biophysical model of MT-MT interactions. The chemical bonding energy of a
crosslinker is calculated from the dissociation constant Kd measured in tobacco MAP65-1b by Wicker-Planquart
et al. [137] using µX = kBT ln Kd [66].
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3.3. MT-MT interactions

In addition to the mechanical energy, EME , of the bent MT and stretched
crosslinkers, there is also the chemical bonding energy of the crosslinkers,
−µXnX = −µX lX/δ, which acts favorably (negatively). The energy associ-
ated with entrainment is thus

Eent(l, L, nX) = EME(l, L, nX)− µXnX . (3.8)

The energy in Eq. 3.8 describes the final state of an entrained MT, with-
out mentioning the pathway through which it arrived there. As mentioned
above, the adiabatic approach we use in the next section to compute the
probability of entrainment is independent of the details of the pathway, pro-
vided that such a pathway exists and that there are no energetic barriers
preventing entrainment. Here, we describe a possible mechanistic model for
entrainment via torque provided by crosslinkers to demonstrate a pathway
free of energetic barriers to the entrained state. This model is similar to the
model of actin bundling proposed in Yang et al. [141].

The mechanistic model below is presented as follows. The incident MT
tip has an initial deflection making its angle at the collision site θX (which
is distinct from θ, the angle between the undeflected portion of the incident
MT and the barrier MT, see Fig. 3.4). We compute the torque τ with which
the bending rigidity of the MT resists entrainment. We then compute the
torque τXwith which putative crosslinkers promote further entrainment. If
τX > τ , then θX decreases. If θX = 0 is an attractive steady-state of this
process, the MT becomes entrained.

Suppose the straight, anchored section of an incident MT makes an angle
θ with a barrier MT, while its free length bends slightly, so that the angle
between the two MTs at the collision site is θX , as shown in Fig. 3.4. The
MT acquires an initial deflection before the first crosslinker attaches. Here
we assume this initial deflection is due to thermal fluctuations, under which
the average tip deflection and tip angle [71] are

y0 = 0.57
√
L3/Lp, (3.9)

tan (θ − θX) = 1.90
√
L/Lp (3.10)

where Lp = B/kBT is the persistence length of a MT. Cytoplasmic stream-
ing [120] may further promote initial deflection, so our assumption in this
section is an underestimate.

At the collision site, the incident free end is subject to torque τ , caused
by crosslinkers elaborated upon below. The MT’s shape is described by
the beam equation with boundary conditions y(L) = y′(L) = 0, y′(0) =
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L

y0

θ
θX

Incident MT

Barrier MT

Figure 3.4: A mechanical pathway to entrainment. An incident MT en-
counters a barrier MT at an approach angle θ. The incident MT is slightly
bent due to thermal fluctuations and, at the point of intersection, makes
an angle θX with the barrier MT. (Inset) Crosslinkers (red online) attach
two intersecting MTs. The crosslinkers vary in length, li ∈ [l0, lM ] and are
spaced δ apart. Distance along the bisector to the ith crosslinker is xi.
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tan (θ − θX) and y′′(0) = τ/B. We find the relationship between the tip
deflection y0, crosslinker torque and intersection angle,

y0 = (L/6)(4tan (θ − θX)− τL/B). (3.11)

A particular Hookean crosslinker at position i provides a torque τi = xikX(li−
l0) where li is the length of crosslinker i and xi is its position along the bi-
sector of the MTs, see Fig. 3.4. While crosslinkers have a chemical bond
energy µX favouring attachment, this attachment cannot pull distant MTs
together separated by tens of nanometers of cytoplasm, even if it is energet-
ically favourable. Therefore we assume a crosslinker will attach only if the
MT bond sites are separated by no more than lM given by the Equipartition
Theorem, kBT/2 = (kX/2)(lM − l0)2. The total torque from all crosslinkers
is

τX = 2
∫
x(s)

kX
δ

(l(s)− l0)ds

=
kX
δ

(
1
3
l3M +

1
6
l30 −

1
2
l0l

2
M

)
cos (θX/2)
sin 2(θX/2)

= C
cos (θX/2)
sin 2(θX/2)

(3.12)

where the characteristic torque C ≈ 2−5 pN nm contains the molecular prop-
erties of a crosslinker, using ranges from Table 3.3. The torque is unbounded
as θX → 0. This divergence occurs because as the angle between the MTs
shrinks, the number of crosslinkers that pull them together increases.

In mechanical equilibrium, the elastic restoring torque of the MT τ ,
found by solving Eqs. 3.11-3.10, will balance with the crosslinker torque
τX from Eq. 3.12. Out of mechanical equilibrium, the angle θX obeys
dθX/dt = ν(θX)(τX(θX) − τ(θX)) where ν is the rotational mobility. If
τX < τ , the incident MT will straighten. If τX > τ , the incident MT will
bend towards the barrier MT and another crosslinker can attach. We find
that τX(θX) − τ(θX) < 0 for θX > 0 and passes through the origin (not
shown). That is, attachment of a crosslinker increases the torque and, be-
cause of the geometry, allows yet another crosslinker to attach. Thus, the
MT becomes entrained.

For L = 3µm, the MT can access the entrained state through this path-
way at collision angles up to 90◦. At L = 1µm, this pathway leads to
entrainment for θ < 65◦. These angles are comparable to angles at which en-
trainment occurs. This tells us that thermal fluctuations in the pre-entrained
free tip are sufficient to allow the crosslinkers to entrain the incident MT.
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Bending induced by the drag force of cytoplasmic streaming [7] will increase
the range of angles that can be entrained, however it is not necessary.

This calculations tells us when entrainment may occur; to find out the
probability that it will occur, we use an adiabatic approach described below.

3.4 Entrainment and crossover probabilities

Entrainment and crossover do not occur deterministically but rather, for
each collision angle θ, there is a probability that the incident MT will entrain,
p(ent|θ) or crossover, p(cross|θ). In this section, we derive a model to
compute these probabilities.

In thermodynamic equilibrium, a pair of collided MTs will exhibit col-
lision resolution j ∈ {ent, cross} with probability given by the Maxwell-
Boltzmann distribution

Pj =
1
Z

exp(−Ej/kBT ). (3.13)

where Z is a normalizing factor. The MTs in living cells are open systems far
from equilibrium. However, a separation of timescales allows us to make an
adiabatic approximation and use a modified version of Eq. 3.13. The elastic
relaxation timescale of the MT is τ−1

relax ≈ 103 s−1 [71], and typical values
for MAP kinetics are s−1 [43, 62]. Meanwhile, on the relevant length scale
of L ∼ 3µm, MT growth is slow vpg/L ≈ 1 min−1, and we found above that
MT-cortex anchoring is also slow, konL ≈ 1 min−1, koff ≈ 10−4 min−1. Thus,
mechanics and crosslinking kinetics occur on a fast timescale of seconds,
while MT growth and anchoring kinetics occur on a slow timescale of minutes
or longer.

On the slow timescale of MT growth and anchoring, the incident MT
has free length L+ l(t) which grows at rate vpg . Mechanics and crosslinking
are reversible and occur on the fast timescale, so an ensemble will have a
distribution of nX , the number of crosslinkers attaching the incident and
barrier MTs, given by

p(nX ≥ 1|θ, l, L) =
1
Z

∞∑
nX=1

exp (−Eent(l, L, nX)/kBT )

p(nX = 0|θ, l, L) =
1
Z

exp (−Ecross(l, L)/kBT ) . (3.14)

In this case, the normalizing factor is

Z =
∞∑

nX=1

exp (−Eent(l, L, nX)/kBT ) + exp (−Ecross(l, L)/kBT ) . (3.15)
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We think of nX ≥ 1 as states that, if anchored, would be entrained, while
nX = 0 states would cross over the barrier. We measure time on the slow
scale, t, from the time the incident MT’s plus-end arrives at the collision
site, so l = vpgt. In the time interval (t, t + dt), a portion g(vpgt)dt of the
ensemble is anchored, as described in Eq. 3.2. At any time t, the mechanics
and crosslinking remain in equilibrium, so Eqs. 3.14 are satisfied. For a
given free length of L,

p(ent|θ, L) =
∫ ∞

0
p(nX ≥ 1|θ, l, L)g(l)dl. (3.16)

The overall probability of entrainment at collision angle θ is given by the
the following equation, the principal result of this paper:

p(ent|θ) =
∫ ∞

0

∫ ∞
0

p(nX ≥ 1|θ, l, L)g(l)g(L)dldL. (3.17)

In a similar manner, we calculate the overall probability of crossover at
collision angle θ as

p(cross|θ) =
∫ ∞

0

∫ ∞
0

p(nX = 0|θ, l, L)g(l)g(L)dldL. (3.18)

The collision resolution probabilities p(ent|θ) is shown in Fig. 3.5A for both
WT and clasp-1 anchoring kinetics. Crossover probability p(cross|θ) is the
complement, 1− p(ent|θ).

The model parameters are listed in Table 3.3.
Some experimental studies measure p(θ|ent) rather than p(ent|θ), that

is, the angular distribution of all entrainment events. We convert between
the two using Bayes’ rule, p(θ|ent) = p(ent|θ)p(θ)/

∫
p(ent|θ′)p(θ′)dθ′ with

the approximating assumption that collisions are uniformly distributed in
collision angle. These are shown in Fig. 3.5B. The experimental observations
from Ambrose and Wasteneys [7] are also shown. In order to dismiss coinci-
dences, the authors only reported readily noticeable changes in orientation,
which would underreport low-angle collisions. For this reason, we assume
the uncertainties are large for collisions below 20◦ and omit them from the
figure.

The results are insensitive to model parameters. Varying parameters
kon, koff, δ‖, µX , Ecat, B and d by ±10% led to no significant change in the
collision resolution probabilities.
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Figure 3.5: Collision resolution probabilities. (A) Probability of entrainment
given by Eq. 3.17 for WT and clasp-1 anchoring kinetics. Dashed lines are
an upper bound for probability of collision-induced catastrophe. (B) Dis-
tribution of zippering angles for WT and clasp-1 anchoring kinetics, along
with experimental histograms from Ambrose and Wasteneys [7]. These are
calculated from the results in panel A using Bayes’ Rule. In the experimen-
tal histograms, we exclude entrainment events below 20◦ since low-angle
entrainment events are difficult to resolve experimentally.
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energy of the incident MT.
A major prediction of our model is the limited significance of collision-

induced catastrophe, in agreement with observations in Arabidopsis. How-
ever, Dixit and Cyr [44] report significant collision-induced catastrophe in
Tobacco BY2 cells. As noted above, one possible explanation is a difference
in anchoring in different organs and species. Another possible explanation
is the action of an unknown MAP at collision sites, which may promote
catastrophe.

This model makes several testable predictions concerning MT-cortex an-
choring. The parameter fits found in Table 3.1 demonstrate that the asso-
ciation and dissociation rates in WT and clasp-1 of Arabidopsis are slow.
Furthermore, these parameters suggest how CLASP affects anchoring. The
clasp-1 mutant has roughly half the WT kon, but leaves koff unaffected.
This suggests CLASP is involved in promoting anchor association between
MTs and the cortex, while it is not involved in dissociation of anchors. The
model also predicts that faster anchoring kinetics lead to higher rates of
collision-induced catastrophe.

This model predicts that the probability of entrainment decreases mono-
tonically with collision angle. This is in agreement with observations of Dixit
and Cyr [44], but contrasts with the results of Ambrose and Wasteneys [7]
(see Fig. 3.5B), where entrainment at small angles is not reported. How-
ever, as mentioned above, in order to dismiss coincidences, the authors only
reported readily noticeable changes in orientation, which would underreport
low-angle collisions.

The adiabatic approach we use here allows us to produce collision resolu-
tion probabilities with only a few, and experimentally well-constrained, pa-
rameters: the MT bending modulus, crosslinker spacing, and the crosslinker
bonding energy. Moreover, it is independent of the details of the pathway a
particular MT follows to its proper collision resolution, which remains to be
experimentally elucidated. However, the approach has several drawbacks.
It relies heavily on slow anchoring and implicitly assumes there are no im-
pediments to the rapid exploration of the energy landscape. A dynamic
approach involving either Langevin equations [83, 142] or Fokker-Planck
equation [11, 97] remains desirable, however this will require kinetic rate
constants for all processes and other presently unmeasured experimental
details.

51



Chapter 4

Cortical microtubule
organization at the cell scale3

4.1 Introduction

In this chapter, I present a computational study of CMTs in plants. We
simulate several thousands of MTs over timescales of minutes to hundreds
of minutes, including the effects of CIC, plus-end entrainment and MT-
dependent nucleation. We explicitly model the mor1-1 and the clasp-1
mutants of Arabidopsis thaliana and find agreement with experiments for
mor1-1, but not clasp-1. Our results illustrate assumptions under which an
ordered array will emerge, and assumptions under which it does not.

4.2 Materials and methods

Ambrose and Wasteneys [7] and Shaw et al. [120] report CMTs switch-
ing spontaneously between growth (g), pause (p) and shrinkage (s). This
three-state dynamic instability model thus involves eight parameters: six
transition rates between the states fij where i, j = g, p, s, and growth and
shrinkage velocities vg and vs. As a simplification of this three-state model,
a two-state dynamical instability model involving four parameters has been
studied [46, 116] and used extensively in cell biology [56, 60, 139]. The
mean length Dogterom and Leibler [46] and mean lifetime [116] of a MT in
the two-state model depend on a threshold quantity fgsvs − fsgvg. If the
quantity is positive, the MTs tend to shrink more than they grow, and the
MTs will have a finite mean length and mean lifetime. Otherwise, on av-
erage, they tend to grow forever. For the three-state case, we compute the
equivalent equations below.

3A modified version of this chapter has been published as Allard, Wasteneys and
Cytrynbaum, “Mechanisms of self-organization of cortical microtubules in plants revealed
by computational simulations”, Molecular Biology of the Cell, 21 p. 278, 2010 (see bibli-
ography [3]).
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In the absence of interactions, the length distribution of a population
can be modeled using a partial differential equation [46]. For the two-state
model,

∂

∂t

[
Ng

Ns

]
= A

[
Ng

Ns

]
+
∂

∂l

(
V

[
Ng

Ns

])
(4.1)

where Ng(l, t) and Ns(l, t) represent the density of growing and shrinking
MTs of length l, respectively, and

A =
[
−fgs fsg
fgs −fsg

]
, V =

[
−vg 0

0 +vs

]
(4.2)

represent transitions between states and advection, respectively. If new
MTs are nucleated with zero length and in the growing state at rate k, the
boundary conditions are vgNg(0, t) = k and Ns(l, t) → 0 as l → ∞. This
leads to a unique steady-state Ni = αiexp

(
−l/l̄

)
where

l̄ =
vgvs

fgsvs − fsgvg
(4.3)

as long as the denominator is positive [46]. The mean lifetime can be found
by assuming the system is in steady-state, when nucleation must balance a
constant death rate τ−1,

k =
1
τ

∫ l

0
Ng +Nsdl (4.4)

where τ is the mean lifetime. This gives

τ =
vg + vs

fgsvs − fsgvg
(4.5)

in agreement with [116]. For the three-state model, the partial differential
equations now involve Ni(l, t), i = (g, p, s) and the matrices become

A =

 −(fgp + fgs) fpg fsg
fgp −(fpg + fps) fsp
fgs fps −(fsg + fsp)

 (4.6)

and

V =

 −vg 0 0
0 0 0
0 0 +vs

 . (4.7)
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The mean length and mean lifetime can be found as above,

l̄ =
vgvs(fpg + fps)

D
(4.8)

τ =
vs(fgp + fpg + fps) + vg(fsp + fpg + fps)

D
(4.9)

where the denominator

D = vs(fgpfps + fgsfpg + fgsfps) − vg(fpgfsg + fpgfsp + fpsfsg) (4.10)

is the threshold quantity: if it is negative, the mean length and lifetime
are infinite. In both the two-state and three-state models, if the minus-end
shrinks at a constant velocity, we make the coordinate transformation

vg = vpg − vms (4.11)
vs = vps + vms . (4.12)

There is an equivalent threshold quantity that determines if the MTs
tend to remain finite or grow indefinitely. Note that these simplified models
only consider dynamic instability: they are only valid in the absence of inter-
actions between the MTs and any growth boundaries, and in the abundance
of free tubulin. Thus the mean length and mean lifetime should be thought
of as characteristic scales that are perturbed by MT-MT interactions and
the action of MAPs. Tables 4.1 and 4.2 summarize parameters from the
literature that we use in this paper.
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Kawamura and Wasteneys [78] Shaw et al. [120] Dixit and Cyr [44]
WT 21◦C WT 31◦C mor1-1 21◦C mor1-1 31◦C

fgp ( min−1) 0.20 0.38 0.20 0.96 0.28 –
fgs ( min−1) 0.17 1.59 0.38 0.82 0.52 1.61
fpg ( min−1) 2.01 1.40 1.56 0.70 0.26 –
fps ( min−1) 1.02 0.70 0.56 0.62 1.30 –
fsg ( min−1) 1.00 1.99 1.18 0.61 0.59 3.26
fsp ( min−1) 0.31 0.44 0.59 1.21 1.09 –
vp

g (µm/min) 3.50 6.50 2.50 2.00 3.69 5.60
vp

s (µm/min) 9.00 12.00 6.20 3.80 5.80 10.09
vm

s (µm/min) – – – – 0.53 –
Assuming minus-end stationary
l̄ (µm) -15.12 13.55 -11.47 3.27 7.89 -28.1
τ( min) -6.46 3.83 -7.38 4.47 5.26 -7.8
Assuming minus-end shrinking, vm

s = 0.53µm/min
l̄ (µm) -21.46 9.49 -49.67 1.74 5.2 94.5
τ( min) -10.18 2.79 -37.03 2.81 3.75 27.5

Table 4.1: Dynamic instability parameters from three-state models using data from [78, 120] and two-state models
using data from [44]. The mean length l̄ and mean lifetime τ in the absence of interactions or cell boundaries
are computed using Eqs. 4.3-4.9. The minus-end shrinking velocity is taken from the average shrinking velocity,
including pauses, in [120]. Since l̄ and τ consider only the effects of dynamic instability, they should be thought
of as characteristic scales which are perturbed by MT-MT interactions and the action of MAPs.
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Parameter Meaning Value Reference
θZ Critical zippering angle 40◦, 60◦ [7, 44]
θnuc Branched nucleation angle 40◦ [100]
k0 Background nucleation rate 10 µm−2 min−1 Estimated
k1 MT-dependent nucleation rate 103 min−1 Estimated
pcat Probability of catastrophe upon steep collision 0.09–0.6 [44, 138]
pzip Probability of zippering upon shallow collision 1 [44]
δ Spacing between bundled MTs 25 nm [29]

Table 4.2: Parameters used in the model in addition to the dynamic instability parameters in Table 4.1.
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We assume the minus-end is either always static, or continuously shrink-
ing with constant rate vms . Shaw et al. [120] report MT minus ends spending
25.3% of the time shrinking at, on average, 2.78 µm/min, and 8.4% of the
time growing at 1.96 µm/min, and the remaining time (66.3%) paused.
Thus, for instances in which we assume minus ends shrink, we use an ap-
propriately weighted average of these data,

vms = 0.253(2.78µm/min)+0.084(−1.96µm/min)+0.663(0) = 0.53µm/min.
(4.13)

When two MTs collide, the outcome depends on the angle between the
incident and barrier MTs [132], which we call the collision angle θX . We
define the critical entrainment angle θZ as follows. If θX > θZ , the collision
is steep and catastrophe occurs with probability pcat, otherwise the incident
MT crosses over the barrier MT (with probability 1− pcat). In Arabidopsis,
9% of steep-angle collisions result in catastrophe in petiole epidermal cells
and 25% in leaf pavement cells [138], while in tobacco BY2 cells, catastrophe
results 60% of the time [44]. In these studies, the angles 45◦ and 40◦,
respectively, were found to delineate the transition between entrainment
and catastrophe.

If θX < θZ , the collision is shallow and plus-end entrainment occurs with
probability pzip. After an entrainment event, the extant segment of the inci-
dent MT remains in its pre-collision configuration, but the plus end continues
to grow parallel to the barrier MT. Thus, the MT is now composed of two
line segments with a kink. In this paper we assume this phenomenological
description of entrainment, neglecting fine-grain biophysical properties of
the kink. The segment from the kink to the plus-end of the entrained MT
is kept a distance of δ = 25 nm from the barrier MT in agreement with
electron microscopy of crosslinking due to MAP65 [29].

We consider two modes of MT nucleation. The first is independent of
the extant MT array. MTs of zero initial length and uniform random ori-
entation are inserted randomly into the cortex, at rate k0 (in µm−2 min−1).
The second is MT-dependent nucleation, where new MTs are nucleated off
extant MTs. The rate of MT-dependent nucleation will depend upon both
the length of existing polymer and the number of available γ-TuRC in the
cytoplasm [100]. However, we assume the γ-TuRC is rate-limiting and thus
MT-dependent nucleation occurs at a constant rate k1 in min−1. Once the
new MT is nucleated, its plus-end immediately begins dynamic instability,
and if vms > 0, the minus-end immediately begins shrinking. In reality, there
is likely to be a delay before katanin severs the minus-end [118], but since
an actual lag time is unknown, we assume this is negligible. Also, we find
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that a completely static minus-end only delays the onset of self-organization,
suggesting the katanin delay would not change our results significantly.

There are physical details not explicitly included in the model, such
as the mechanical properties of the MTs, the cortex and the anchors con-
necting them. We assume that anchors are sufficiently strong and densely
distributed along MTs so that (1) the radius of curvature of the cortex is
not mechanically significant and (2) the kink in an entrained MT remains
in place even if the barrier MT is removed through depolymerization.

There are several ways to measure how well-oriented an array is. A
common qualitative approach is to plot a histogram of MT angles defined
so that the dominant direction is either 0 or 90◦ [7, 69]. If the angle distri-
bution is unimodal, its standard deviation serves as a quantitative measure
of orientation. As an extension of this, the distribution can be weighted by
length, i.e., the angles of longer MTs count for more in the histogram.

More generally, Baulin et al. [16] define an order parameter 0 < Sl < 1
based on an angular cost function, weighted by l2i where li is the length of
each MT. Here, we define a slightly modified version of their order parame-
ter,

S =
∑
i

li(cos2(θi − Ω)− sin2(θi − Ω))/
∑
i

li (4.14)

where θi is the angle of each straight MT segment and Ω is the dominant
angle. Heuristically, S represents the relative difference between the pro-
jected polymer length in the dominant direction and the projected polymer
length in its perpendicular direction.

4.2.1 Details of computer simulation

We simulate on a 10µm × 10µm domain, which is a typical size of a plant
cell face in early interphase, with periodic boundary conditions in both di-
rections, except where we explicitly explore the consequences of boundaries.
All simulations are run for 1000 minutes and were replicated ten times with
different, random initial conditions. We use dynamic instability parameters
from Table 4.1 and, unless otherwise noted, other parameters from Table 4.2.

The stochastic simulation uses a mixed-timestep method, which com-
bines the stochastic-timestep Gillespie method with a fixed-timestep method.
For MTs switching between MT states (competing Poisson processes with
rates fij) and constant growth and shrinkage velocities, we use a Gille-
spie algorithm to simulate resulting in a variable timestep on the order of
t = 10−3 min. Detect and resolution of collisions is more computationally
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taxing, so we do not do it every Gillespie timestep. Instead, we use a fixed
timestep of t = 0.05 min.

Detecting collisions by comparing the plus-end of every MT with the bulk
length of every other MT would be an O(n2) computational cost [113] where
n is the number of MTs. To increase the efficiency, we split the domain into
a rectangular grid where each grid box has side length ∆xColDet, as shown
in Fig. 4.1.

a) b)

Figure 4.1: Collision detection algorithm. The domain is divided into grid
boxes (blue), each MT is determined to occupy a grid box by determining
the location along its length at regular intervals, and only MTs occupying
the same grid box are compared. (a) The MT collision is detected in the
dashed grid box. (b) A single grid (blue grid) will miss some collisions,
but with a second grid staggered from the first (red grid) no collision goes
undetected.

O

(
n2∆xColDet

L
+

n

∆xColDet

)
, (4.15)

which can be made smaller by choosing ∆xColDet. This grid will not detect
MTs near the edges of one grid box (See Fig. 4.1). To detect all collisions,
we use two subgrids staggered by 0.5∆xColDet.
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4.3 Results

4.3.1 Collision-induced catastrophe does not lead to
ordering for physiological kinetic parameters.

With parameters as given in Tables 4.1 and 4.2, collision-induced catastro-
phe (CIC) did not lead to any ordering. Instead, they lead to sparse arrays
shown in Fig. 4.2A. For high values of pcat = 0.9 (shown in the figure), the
MTs were too short in length and lifetime for orientation to emerge, while for
low values of pcat = 0.1, they simply did not interact enough. Intermediate
values of pcat also failed to organize. However, Baulin et al. [16] report that
pause-inducing collisions alone are enough to give rise to an oriented array,
a result we confirm with our simulations (see Fig. 4.2B and Supplemental
Movies S1 and S2 of [3]). Here, we show that the pause-inducing collision
model is a limiting case of the catastrophe-inducing collision model.

To understand the difference between catastrophe-inducing collisions and
pause-inducing collisions, we consider the two-state model, which has five
parameters, vpg , v

p
s , fgs and fsg which all pertain to the plus-end, and vms ,

which pertains to the minus-end. In addition, the rate of nucleation, k0,
provides an additional time scale. However, if we rescale time to be measured
in units of T ≡ (vpg)−2/3k

−1/3
0 and length L ≡ (vpg/k0)1/3, then the two-state

model is described by four parameters,

α = vps/v
p
g (4.16)

β = fgsT (4.17)
γ = 1/(fsgT ) (4.18)
δ = vms /v

p
g . (4.19)

(Note that scaling by l̄ and τ is not appropriate here, since we are sometimes
in the infinite-growth regime.) To ensure MT nucleation can occur, δ < 1. In
this parametrization, the model of Baulin et al. [16] corresponds to α, β, γ →
0 and it completely described by one parameter, δ (related to their α, which
they set in [0.17, 1.5]). The two-state parameters reported in [44] (Table 4.1)
give α = 1.8, β = 0.16, γ = 3.1 and either δ = 0 (since they did not study
minus-end dynamics) or γ = 0.09 (using vms from [120]).

After conducting a random sweep of 103 kinetic parameter sets, we con-
clude that CIC only leads to self-organization in the limit where the shrink-
age rate and catastrophe rate are approximately zero (vps , fgs ≈ 0) and the
rescue rate is much larger than the catastrophe rate (fsg � fgs), consistent
with Baulin et al. [16].
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Figure 4.2: Simulation snapshots at t=60 min with (A) collision-induced
catastrophe only, using parameters from WT at 31◦C (Kawamura and
Wasteneys 2008), and (B) collision-induced pauses, using the single-state
model of Baulin et al. [16].
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4.3.2 Plus-end entrainment, with or without CIC, results
in an ordered array.

Simulations that include entrainment gave rise to significant order param-
eters within the first 60 min. In Fig. 4.3, we display snapshots from the
simulations for the four kinetic parameter sets taken from Kawamura and
Wasteneys [78] for plus-end dynamics and the average vms from Shaw et al.
[120]. In Fig. 4.3A-C, a single dominant direction is evident with patches of
deviation present. The dominant direction (red arrows) is uniformly random
(data not shown) across simulations and persists for at least 103 min.

Movies showing the time course of some of these simulations are in Sup-
plemental Material S3-S7 of [3]. Initially, several locally ordered domains
emerge, grow and shrink (but never rotate, as reported in Chan et al. [31]).
By 103 min, typically a single orientation dominates. However, sometimes
the cortex is divided into two domains with distinct dominant orientations.
These directions were never observed to differ by more than the critical en-
trainment angle Z. It remains possible that one of these domains becomes
globally dominant on timescales much larger than 103 min.

In Fig. 4.4A-B, we show time series from 10 runs with WT 31◦C param-
eters (blue curves). The mean lengths increase slowly. After ≈ 103 min,
in each simulation, the mean MT length converges to a value below l̄, the
predicted mean length in the absence of interaction (Table 4.1, Eq. 4.8). For
comparison, single CMTs have been reported to be 2−4µm when measured
by transmission electron microscopy [63]. The number of MTs converges
quickly to roughly 103 (data not shown). Note that the steady-state num-
ber of MTs depended on k0, and we chose k0 = 10µm−2 min−1 to give ≈ 103

MTs.
Using S as our measure of order, we conclude that plus-end entrainment

does give rise to order. This order emerges with a timescale below 102

min (Fig. 4.4B), in agreement with the observed time-to-order in vivo [135].
The full orientational distribution are shown in Fig. 4.4C. Notably, without
CIC in the simulations (ie. pcat = 0) ordering still emerged, see Fig. 4.6A.
Ordering also occurred using parameters from Shaw et al. [120] and for the
two-state model using parameters from Dixit and Cyr [44] (data not shown).

4.3.3 With kinetic parameters taken from the mor1-1
mutant at 31◦C, ordered arrays do not form.

In simulations of the mor1-1 mutant at 31◦C, the MTs were short and
therefore much lower in total polymer density. From Fig. 4.5A, we see their

62



4.3. Results

A. WT 21, S = 0.58 B. WT 31, S = 0.89

C. mor1-1 21, S = 0.62 D. mor1-1 31, S = 0.12

Figure 4.3: Collision-induced catastrophe at steep angles (θ > 40◦) and en-
trainment at shallow angles (θ < 40◦) for four sets of kinetic parameters from
Kawamura and Wasteneys [78] and continuously depolymerizing minus-end
[120]. The top and bottom rows are WT and mor1-1 kinetic parameters,
respectively, and the left and right are at 21◦C and 31◦C, respectively. New
MTs are inserted randomly at a rate of k0 = 10µm−2 min−1. The bound-
aries are periodic in both directions. After 60 minutes, order emerges in
local domains in all cases except mor1-1 at 31◦C. The direction of the red
arrow indicates the dominant direction of the MT array, while their lengths
are proportional to the order parameter.
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A

B

C

D

E

Figure 4.4: Data from WT (WT) simulation runs. (A) Average length
of a MT. (B) Order parameter S, given by Eq. 4.14. All simulations use
kinetics from WT at 31◦C in Table 4.1. (C-E) Histograms from selected
runs depicted in Fig. 4.3. Blue curves in A-B and histogram in C have
a depolymerizing minus end and a critical entrainment angle of θZ=40◦.
Green curves in A-B and histogram in D have a static minus-end (vps = 0)
with θZ=40◦, and red curves in A-B and histogram in E have depolymerizing
minus end with θZ=60◦. Time series from ten independent simulations are
shown in each case.
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average length is 0.5µm, roughly one sixth of their mean free length in the
absence of interactions. Reducing the nucleation rate increased their mean
length slightly, but still did not allow for ordering.

A

B

C

D

Figure 4.5: Data from simulations of the mor1-1 mutant. (A) Average
length of a MT. (B) Order parameter S, given by Eq. 4.14. All simulations
use kinetics from mor1-1 at 31◦C in Table 4.1. Blue curves in A-B and
histogram in C have a depolymerizing minus end while green curves and
histogram in D have a static minus-end (vps = 0).

4.3.4 Static minus-ends delay, but do not prevent, array
organization.

While three-state dynamic instability of MT plus-ends has been reported
extensively [44, 78, 120], the hybrid treadmilling has been reported less often
[120]. To explore the consequences of a freely depolymerizing minus-end, we
ran simulations with static minus ends (vms = 0).
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A typical array arising from vms = 0 is qualitatively similar to the arrays
in Fig. 4.3B, the equivalent runs with vms = 0.53µm/min. The order
parameter S after 102 min is, on average, also comparable (0.9 and 0.8 for
vms = 0.53µm/min and vms = 0, respectively). However, static minus-ends
appeared to delay the onset of self-organization. In Fig. 4.4B, we show the
order parameter’s time evolution for both vms = 0.53µm/min (blue curves)
and vms = 0 (green curves). While the simulation with a shrinking minus-
end has reached its well-ordered steady-state (within 10% of its steady-state
order parameter S) within 20 min, it takes the simulation with static minus-
ends roughly 80 min, which is four times longer. The dynamics of the minus-
ends affect the average length of MTs (Table 4.1) in that if minus-ends are
static, the MTs grow slightly longer. In simulations with kinetic parameters
from the mor1-1 mutant at 31◦C, we find that static minus-ends induce
a change sufficient to allow for ordering. Time series data for this kinetic
parameter set are shown in Fig. 4.5A-B. The order parameter in Fig. 4.5B,
shows that the mutant with a depolymerizing minus-end does not organize
(blue curve). With static minus ends, organization is rescued (green curve).
In this case, however, self-organization still takes longer than in simulations
of WT plants with non-static minus ends.

4.3.5 Increasing the critical entrainment angle does not
enhance, but rather delays, array organization.

MTs in the clasp-1 mutant described by Ambrose and Wasteneys [7] entrain
over a wider range of incident angles, with a mean entrainment angle roughly
11◦ larger than in WT, and demonstrate “hyperparallel” arrays, indicated
by a smaller standard deviation of MT orientations. To test whether a
higher critical entrainment angle can explain the hyperparallel arrays, we
ran simulations in which we increased the critical entrainment angle from
θZ=40◦ to θZ=60◦, which is equivalent to increasing the mean entrainment
angle by 10◦.

Qualitatively, the resulting arrays appear indistinguishable from the cor-
responding array in Fig. 4.2 (see Supplemental Movie S8 of [3]). However,
examining the time course of the order parameter S reveals that the in-
creased θZ delays and slightly reduces array ordering, similar to the case of
static minus-ends. The time series of ordering is shown in red in Fig. 4.4B,
with a typical angle distribution in Fig. 4.4E. This suggests that the clasp-1
hyperparallel MT phenotype is dependent on another mechanism.
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4.3.6 MT-dependent branched nucleation leads to
unrealistic array structures.

Up to this point, all MT nucleation has been assumed to occur uniformly in
space and at random angles, referred to here as background nucleation. To
explore the reports of MT-dependent branched nucleation, we ran simula-
tions without background nucleation (k0 = 0) and non-zero MT-dependent
nucleation rate k1 = 103 min−1.

These simulations always resulted in arrays with a distinct structure
reminiscent of shattered glass. As with background nucleation, one or a few
dominant angles emerged locally at early times, the domains grew or shrank,
and often one direction dominated globally. However, the arrays were always
sparse with large gaps free of persisting MTs. A typical snapshot is shown
in Fig. 4.6C. Time courses of typical simulations are shown in Supplemental
Movies S9 and S10 of [3].

While MT-dependent branch nucleation alone leads to an unrealistic
array organization, this does not necessarily mean it is not important. We
ran simulations with a combination of MT-dependent and MT-independent
nucleation. As MT-independent nucleation is reduced, the arrays appeared
more and more sparse. A simulation with a combination of nucleation types,
k1 = 500 min−1 and k0 = 5µm−2 min−1, is shown in Fig. 4.6D.

4.3.7 Catastrophe-inducing boundaries are enough to bias
the dominant orientation.

Up to now, all simulations described were carried out on a square cortex
with periodicity in both directions. That is, a MT that disappears off any
edge appears from the opposite edge. When a dominant angle emerges in
our simulations, it is uniformly random. In diffusely elongating plant cells,
the dominant angle is transverse to the direction of elongation, indicating
that there must be a symmetry-breaking mechanism that signals a preferred
orientation to the MTs. One candidate for this mechanism is interaction
with the apical and basal poles of the plant cell [47]. Real cells have distinct
faces. Side walls may allow MTs oriented transverse to the elongation axis
to continue growing indefinitely, unperturbed by boundaries between faces.
In the longitudinal direction, MTs can treadmill onto the cross walls but
rarely do [37]. It has been suggested that the boundaries of the poles inhibit
MT growth, either sterically or through MAP activity [47]. We represent
this interaction by imposing catastrophe on any MT that collides with the
top or bottom of the cylinder.
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Figure 4.6: Simulation snapshots at t=60 min using kinetic parameters from
WT at 31◦C. (A) Entrainment at shallow angles (< 40◦), and no collision-
induced catastrophe (pcat=0). (B) A biased, transverse dominant angle
that arises if two edges (here, the top and bottom) induce catastrophe.
This provides a possible mechanism for selecting a direction transverse to
the cell elongation axis. (C) Sparse array that results if all nucleation is
branched MT-dependent nucleation. (D) Moderately sparse array arising
from a combination of MT-dependent and MT-independent nucleation.

We find that this catastrophe-inducing boundary effect is enough to
cause selection of the transverse angle as the dominant orientation. Snap-
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shots from these simulations are shown in Fig. 4.6B. At t = 60 min, not all
non-transversely oriented patches disappear, yet the dominant transverse
angle always persists.

In fact, even in the complete absence of MT-MT interactions, catastrophe-
inducing boundaries at the cross walls will lead to a certain amount of order-
ing. MTs transverse to the elongation axis can treadmill indefinitely while
those parallel to the elongation axis will quickly encounter a boundary. The
ordering of MTs is therefore strongest near the cross walls and decays to-
ward the midcell over a distance of roughly the mean length in the absence
of interaction.

Even in the absence of any MT-MT interactions, MTs randomly nucle-
ated on a cylindrical cortex can lead to a transverse ordering if collisions
with the boundaries induce catastrophe. A MT plus-end a distance y from
the boundary making an angle θ, measured from transverse the axis of the
cylinder, can grow to a maximum length L = (LC − y)/sin θ where LC is
the cell length. In this case, the right boundary condition on the system of
partial differential equations in Eq. 4.1 is vsNs(L, t) = vgNg(L, t). The so-
lution is still exponential with decay length l̄ but is truncated. The average
length of MTs of angle θ at height y is

〈l〉 ∝
(

1− e−y/(l̄ sin θ)
)(

1− e−(LC−y)/(l̄ sin θ)
)
. (4.20)

From this it is straightforward to compute the order parameter S. We can
also compute a local order parameter S(y) that takes into account all MTs
passing through a given y value (a given circumference of the cylinder).
Although S(y) has no closed form, it can be computed numerically. We
find that this boundary-induced ordering decays away from the boundaries
towards midcell, with a decay length scale of roughly l̄, shown in Fig. 4.7.

MT-MT interaction allows this boundary-induced orientation to propa-
gate further into the midcell cortex. We also found that the introduction of
catastrophe-inducing boundaries does not induce ordering in the CIC-only
model described in Sec. 4.3.1.

4.4 Discussion

Recent genetic and pharmacological experiments on CMTs in plants have
given rise to a model for the self-organization of these MTs into a parallel
array. Here, we have presented the results of large-scale simulations of a
quantitative implementation of this model. We find that self-organization
into a parallel array can arise from a combination of MT dynamic instability,
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Figure 4.7: Orientational order over the whole cell, (Left) for various nor-
malized cell lengths L = λLC and (Right) as it varies across the length of
one cell. The solid curve was found by Eq. 4.20, while the plot symbols are
from the Monte Carlo simulation.
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plus-end entrainment and, in certain cases, CIC. The arrays that arise in our
simulations appear qualitatively similar to the arrays in plant cells, including
the local domains of orientation that are similar to the patchwork patterns in
maturing Chara cells [134] and the outer epidermis of Arabidopsis hypocotyl
cells [31]. In addition to recapitulating WT behavior, our model also agrees
with mutant studies [78].

It has been proposed that CIC can explain ordering. Our results show
that CIC is neither necessary nor sufficient for ordering when physiologically
reasonable dynamic instability parameters are used. Previous modelling
efforts have focused on the role of CIC in the emergence of order. Dixit
and Cyr [44] showed that CIC in combination with plus-end entrainment
leads to ordering. In light of our results, we suggest ordering in their model
arises due to entrainment rather than CIC. The model of Baulin et al. [16]
corresponds to a limit in which the growth rate dominates the shrinkage
rate, and the rescue frequency dominates the catastrophe frequency. This
model fails to self-organize when extended to a regime that matches reported
kinetic parameters [44, 78, 120].

Plus-end entrainment with branched MT-dependent nucleation gives rise
to an oriented array that appears sparse since areas of low MT content have
no candidate nucleation sites, while areas of high MT content have many.
From this, we conclude that exclusive MT-dependent branched nucleation
leads to unrealistic array structures. Free nucleation appears to be necessary
to explain the dispersed arrays seen in vivo. This appears to contradict the
hypothesis that branched nucleation helps to disperse the array throughout
the cortex [132], but is consistent with the observation that during recovery
from drug-induced disassembly, the initial transverse order of freely nucle-
ated MTs is progressively lost when most subsequent MTs are produced by
branch-form nucleation [135]. While MT-dependent branch-form nucleation
alone leads to unrealistic arrays, this does not suggest that it does not oc-
cur. As proposed by Wasteneys and Ambrose [132], it may be specifically
promoted under conditions where it is beneficial to change the predominant
orientation of MTs. Recent improvements in live cell imaging has enabled
the detection of microtubule-dependent nucleation that is parallel to the
parent MT (see Fig. 1C in Ambrose and Wasteneys [7]) and this alternative
form of MT-dependent nucleation might prove to be much more common
than previously thought [132].

We find that increasing the critical entrainment angle does not enhance
the array order. In fact, order is reduced slightly and delayed. This conflicts
with recent experiments in which Ambrose and Wasteneys [7] observed “hy-
perparallel” arrays in the clasp-1 mutant. This suggests that the CLASP
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protein affects array organization through more than simply modulating the
critical entrainment angle.

Two of the phenomena we neglect in our simulations are increased MT
stability through bundling, and severing after crossover. MTs within bundles
remain dynamic, however, with slightly modified kinetic parameters [127].
It is unknown whether this effect arises simply through the reduced collision
frequency, or whether it is important for MT array organization. MT sev-
ering at sites of existing crossovers, possibly mediated by katanin, has also
been reported [138], however this appears rarely as severing of elongated
MTs is rare [120].

Three novel predictions arise from this work. First, if the transverse
dominant direction is selected by catastrophe-inducing boundaries at the
top and bottom edges of the cell, then the time to order will increase as the
cell length increases, as it takes longer for the signal to propagate inwards.

The other two predictions demonstrate the paradoxical influence of static
minus ends. First, if minus ends do not become mobile in wildtype (e.g. in
a katanin knockout), we predict ordering to take fourfold longer. Second,
we predict that a similar perturbation of the mor1-1 31◦C mutant rescues
ordering.

This last set of predictions illustrates one of the values of computational
modeling. The subtle influence of static as opposed to mobile minus-ends,
which in one case promotes and in the other inhibits organization, is essen-
tially impossible to tease out without recourse to computational techniques.
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Chapter 5

Cell edges can drive cortical
microtubule organization4

5.1 Introduction

In Chapter 4, we studied CMTs on an abstract surface with no boundaries
(i.e. periodic boundaries), and on a cylinder. However, multicellular plant
tissues contain cells that are most often polyhedral in shape. In the absence
of clear spatial input from the cell (such as centrosomes), what determines
whether an array will be oriented transverse or longitudinal relative to the
cell axis? And how is the orientation of cortical arrays coordinated between
different cell faces? Recent experiments described by Ambrose et al. [9] show
that the inherent geometry of the cell provides a powerful spatial cue that
contributes to MT array organization, and that the non-uniform distribution
of the MAP CLASP is required to modulate this intrinsic bias. CMTs were
observed to undergo catastrophe when encountering specific cell edges or
regions of edges. Local accumulation of CLASP to distinct edge domains
enables MTs to grow around sharp bends at cell edges, which leads to the
formation of stable MT bundles that traverse two or more faces.

Here, we use computer simulations of CMTs on a “cube” with differen-
tially traversable edges to support the hypothesis that external input can
result in highly biased MT arrays.

5.2 Biophysical basis for edge-induced
catastrophe

In this section, I present a biophysical argument that the curvature of an
edge promotes catastrophe, that under certain circumstances (but not all),

4A modified version of this chapter is in preparation to be submitted as Ambrose,
Allard, Cytrynbaum and Wasteneys, “Asymmetric distribution of CLASP to specific cell
edges enables microtubule growth between cell faces and drives cell-wide microtubule order
in Arabidopsis.” (see bibliography [9]).
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5.2. Biophysical basis for edge-induced catastrophe

larger curvature results in a higher edge-induced catastrophe probability,
and finally that promoting the stability of MTs can result in a lower edge-
induced catastrophe probability.

A particular cell edge has angle θ and curvature κ. The path length l,
curvature κ (specifically, the inverse of an inscribed circle’s radius, measured
in µm−1) and angle θ are related by κ l = θ. Theoretically, the probability
of bypassing an edge, pbypass, depends on both curvature and angle by the
formula

pbypass = 1− exp
(
− 1
vg
fcat(κ)

θ

κ

)
where vg is the MT growth velocity and the function fcat(κ) tells us how
the catastrophe rate is affected by curvature. This probability accounts for
spontaneous catastrophes that would have occurred even in the absence of
curvature [2]. The probability of an edge-induced catastrophe, discounting
spontaneous catastrophe, is

pcat = exp
(
fcat(0)− fcat(κ)

vg
· θ
κ

)
. (5.1)

The details of this relationship depend on the microscopic details of the
edge interaction. Interestingly, Eq 5.1 says that if the curvature does not
substantially increase the rate of catastrophe (if fcat ∝ κβ where β < 1), then
the probability of bypassing an edge may actually increase with increasing
curvature. This occurs since, for a fixed angle, low curvature means the
MT is subject to retardation by the edge for longer. To illustrate how edge-
induced catastrophe may occur, in the case where curvature substantially
increases the rate of catasrophe, I assume fcat(κ) = f0

cat + f∗cat (κ/κ0)3.
According to the dimer-level model of MT assembly of VanBuren et al.

[128] the free-space, no-curvature catastrophe rate is determined by the at-
tachment rate kon, the hydrolysis rate khyd and the bond energies. Allard
et al. [2] extended this model to include physical impediments, which affect
the attachment rate by a factor kon → αkon. The catastrophe rate depends
on α: if α is nearly zero, fcat is much higher. If α is nearly 1, then fcat is close
to its free-space value. An analogous factor αcurv is induced by curvature.
There is evidence from the animal homologues of CLASP [92] that CLASP
alters the MT assembly by modifying the hydrolysis rate khyd. This would
give a new relationship between fcat and αcurv, and also different growth
velocities and free-space catastrophe rates (higher and slower, respectively).
In turn, this determines how severely curvature affects catastrophe rates
(via f0

cat and f1
cat).
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5.3. Computer modelling of cell edge effects on MT organization

The probability of catastrophe, as a function of edge curvature, is shown
in Fig. 5.1. The probability of edge catastrophe has been measured in Ara-
bidopsis leaf pavement cells, both in the presence and absence of CLASP.
These are shown as dashed lines. The parameters, as well as the func-
tional form of fcat(κ), used in this figure are illustrative of the phenomenon.
Detailed derivation or experimental measurement of these parameters, in-
cluding edge curvatures for different cell edges, are desirable to constrain
quantitative values in the figure.
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Curvature (µ m−1)

p ca
t

No CLASP

CLASP
Increasing
MT stability

Background CLASP

Transverse
edges

Side
edges

Figure 5.1: Probability of edge-induced catastrophe for different curvatures
(for example, for side edges and transverse edges in root cells) and differences
in MT stability (for example, as CLASP modulates the hydrolysis rate of
GTP-tubulin dimers). Since the dependence of the catastrophe rate on
curvature was chosen in an ad hoc manner, quantitative values in this figure
are only illustrative.

5.3 Computer modelling of cell edge effects on
MT organization

We used computational simulation [3] to test the hypothesis that MT orga-
nization can be controlled by modulating the ability of MTs to bypass the
edges between cell faces. Using algorithms described in Allard et al. [3] and
parameters measured in this study, we simulated MTs migrating around the
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5.3. Computer modelling of cell edge effects on MT organization

cortex via dynamic instability at the plus-end and continuous depolymer-
ization at the minus-end, and MT-MT interactions through entrainment at
low angles of collision and collision-induced catastrophe at high angles of
collision. We approximated the cell as a cube comprised of faces and edges.
In our model, the cube’s six faces are divided into three classes; periclinal,
side, and transverse (see Fig 5.2A) and the cube’s twelve edges are divided
into three classes: side-periclinal (SP), transverse-side (TS), and transverse-
periclinal (TP). We simulated the presence or absence of CLASP edge pro-
tein by modulating the ability of MTs to cross different edges. When a MT
encounters an edge, it undergoes edge-induced catastrophe with probability
pi, where i = {SP, TS, TP}. The alternative outcome is growth of the MT
past the edge.

Table 5.1: Edge-induced catastrophe probabilities used in simulations.
pSP pTS pTP Situation: Simulation results

0 0.95 0.95 clasp-1 root cells: Transverse array (Fig. 5.2ABC)
0 0.85 0.10 WT dividing root cells: Mixed array (Fig. 5.2D,E)
0 0.85 0.85 WT elongating root cells: Transverse array

We assume SP edges never induce catastrophe, thus pSP = 0. For TS and
TP edges, we use the probabilities of edge-induced catastrophe measured in
leaf cell edges with and without anticlinal bundles, as a proxy for edges
with or without CLASP, respectively, in WT and in clasp-1, rounded to the
nearest 5%. These values are shown in Table 5.1.

Simulations with low or no CLASP (Fig 5.2A), as in WT elongating
root cells and clasp-1 root cells, result in an array that is self-organized and
whose dominant direction is transverse to the elongation axis in agreement
with simulations in Allard et al. [3] and Eren et al. [48]. MT arrays on top
and bottom faces self-organize into independent, random directions and are
less dense.

If CLASP localizes to the transverse-periclinal edges, the increased abil-
ity of MTs to bypass the edge, as observed in WT division zone cells, gen-
erates a mixed orientation MT array (Fig 5.2D,E). MTs on the left and
right side faces organize in the transverse direction, while MTs on the
top and bottom transverse faces organize with dominant direction in-to-
out (Fig 5.2D,E). MTs growing into the periclinal faces from the top and
bottom faces promote longitudinal MTs on the periclinal faces, while MTs
growing into the periclinal faces from the left and right faces promote trans-
verse MTs on the periclinal faces. In this way, CLASP localization at the
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5.3. Computer modelling of cell edge effects on MT organization

Cortical microtubules
Side-periclinal edge
Transverse-periclinal edge
Transverse-side edge

A

B C

Figure 5.2: Simulations of CMT organization on a cube with differential
edge interactions. (A)-(C) MTs can bypass side-periclinal edges (blue) but
undergo catastrophe upon contact with transverse-periclinal and transverse-
side edges (red, green). The same simulation is shown in (A), (B) and (C)
in a flattened and 3D views. This edge interaction results in a transverse
array on the side and periclinal faces, as in WT elongating and clasp-1 cells.
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5.3. Computer modelling of cell edge effects on MT organization

Transverse microtubules (|θ| < 45º)
Longitudinal microtubules (|θ| > 45º)
CLASP edge-induced catastrophe inhibitor

D

E

Figure 5.2: (D)-(E) During WT division, CLASP localizes to the transverse-
periclinal edges, inhibiting edge-induced catastrophe. This leads to a mixed
array with two subpopulations: mainly traverse (0-45 angle to the transverse
axis, light blue) and mainly longitudinal (45-90, dark blue).
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5.3. Computer modelling of cell edge effects on MT organization
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Figure 5.2: (F) Time series showing the order parameter S, defined in
Eq. 4.14, for ten instances of simulations of WT elongating cells, clasp-1
cells and two intermediate values of edge bypass probabilities. Shaded re-
gions indicate the ranges of all ten simulations. Background levels of CLASP
in the WT simulations lead to a slightly lower order parameter. (G) MTs are
allowed to traverse the middle third of side-periclinal edges (green), resulting
in a transverse band evocative of a PPB
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5.4. Discussion

TP edge results in a mixed periclinal array, in agreement with experiment.
Two examples are shown in Fig 5.2D,E.

Previously, Ambrose and Wasteneys [7] observed increased self-organization
in the clasp-1 null mutant compared to elongating WT cells, a difference
that could not be explained by the postulated increased entrainment angle
[3, 48]. During WT elongation phase, we assume there is a background level
of CLASP still at the TS and TP edges, as suggested by different edge-
induced catastrophe probabilities between WT and clasp-1 elongating cells.
Simulations in both cases (clasp-1, and WT elongating cells, which have a
slightly lower edge-induced catastrophe probability at the TP and TS edges)
result in a transverse array. The order parameter S, defined in Eq. 4.14, is
shown in Fig 5.2F. In the presence of background CLASP, the variance of
the time course of S is reduced for WT parameters (purple) compared with
clasp-1 parameters, however the steady-state order is the same. It is proba-
ble that the edge bypassing parameters in elongating root cells are different
from that measured in leaf cells. For this reason, we ran simulations with
edge bypass probabilities that were reduced further to pTS = pTP = 0.3.
This resulted in more variability in the time course and lower organization
(Fig 5.2F, green). Thus a background level of CLASP at the TP and TS
edges in WT can explain the increased self-organization in clasp-1 mutant
observed in [7].

To test whether MT-edge interactions can produce more complex MT
arrays, we simulated a cell in which only the middle third of SP edges
allow MT traversing; the other two-thirds of SP edges and all TP and TS
edges induce catastrophe. This results in a band of MTs organized in the
transverse direction, with sparse, transient MTs outside the band, as shown
in Fig 5.2G. This pattern is evocative of the PPB, as well as leaf epidermal
cells that have non-uniform bundling on anticlinal walls. This suggests the
cell may organize the PPB by tuning MT-edge interactions, either with
CLASP or some other edge-localized MAP.

5.4 Discussion

The experimental work of Ambrose et al. [9] prompted the hypothesis that
MT stabilization at cell edges by CLASP may allow cells to generate the
transverse, longitudinal and mixed arrays observed in root cells, as well as
patterns in leaf pavement cells and the pre-prophase band. Results from
computational simulations support these findings, wherein modulating the
degree of permissiveness to MT passage at a given edge can have dramatic
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5.4. Discussion

effects on cell-wide MT organization.
The combined in vivo / in silico study leads to the proposal that plant

cell edges fit the criteria of a MT organizing structure — by locally inducing
catastrophe or allowing passage of MT plus-ends along cell edges, cell wide
MT organization is affected. Taken together, our new findings indicate that
CLASP action at anticlinal faces and edges works both locally to facilitate
anticlinal MT bundle stability, as well as remotely to facilitate the net-like
mixed arrays on periclinal cell faces. The ability to locally effect cell-wide
MT ordering is consistent with the properties of a MT organizing centre,
with the exception that it is spatially distributed, unlike the MTOC in MT
asters and spindles (Sec. 1.2).
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Chapter 6

Conclusions

6.1 Mathematical modelling techniques

An overarching principle of this research has been the connections between
multiple scales and how the same physical object may be represented in dif-
ferent ways, depending on the scale. The nature of plant CMTs necessitated
modelling from several nanometers to tens of microns.

• Representation of microtubules at the scale of individual dimers of
tubulin allowed us to tease out the relationship between steric barriers,
cortex anchoring and induced catastrophe, addressing the inconsisten-
cies in experimental and theoretical literature. Specifically, differences
in probabilities of catastrophe can be explained as differences in an-
choring kinetics.

• Representation of microtubules as elastic bodies to which MAPs bind
allowed for a mechanistic description of entrainment. This mechani-
cal description acts as a framework to address questions as they arise
at other scales. For example, cell-scale simulations could make two
assumptions when treating entrainment or catastrophe of bundles of
MTs [126]: when a bundle of MTs is incident upon another bundle,
it can be treated as either one collision resolution that moves the en-
tire incident bundle, one collision per incident MT, or one collision
resolution for each pair of incident and barrier MTs. The mechanical
description of entrainment we developed suggests entrainment events
are approximately independent, and the latter pairwise treatment of
entrainment is more appropriate, while collision-induced catastrophe
can be explained as a steric obstruction, so an incident MT colliding
with a bundle of barrier MTs will only feel the leading barrier.

• Representation of microtubules as a series of line segments allowed
efficient large-scale simulation of thousands of interacting MTs. These
simulations provided the first verification of a phenomenon that had
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6.2. The reductionist approach in cell biology

been hypothesized for several years, i.e., that MT-MT interactions can
generate parallel arrays on physiological timescales.

• Representation of microtubule arrays as faces on polyhedra allowed
simulation of the CMT array in its in vivo geometry, and allowed for
the testing of hypotheses generated by the concurrent experiments in
the Wasteneys lab.

Each scale corresponds to a different aspect of the pathway leading to CMT
organization. The overall model developed in this thesis is shown in Fig. 6.1.
This pathway is itself one step in the larger pathway of plant morphogenesis,
described in Fig. 2.2.

Different representations necessitated different mathematical tools, with
two tools providing useful throughout the research. The first is random-
timestep stochastic simulation (Gillespie methods [58]). In the case of the
dimer-level model, it allows chemical rate stochasticity on the well-defined
lattice of a 13-3 microtubule. In the case of cell-scale MT simulations, it
allows the results to be compared with analysis of PDEs to an accuracy that
was difficult to achieve with fixed-timestep stochastic simulation. The sec-
ond tool is an energetic description of dynamics, which allows biochemistry
(reaction rates and bond energies) to be combined with mechanics (elastic
deformation energies and stresses).

6.2 The reductionist approach in cell biology

The reductionist approach in cell biology [112] suggests that phenomena
can be understood by first understanding the constituent molecules and
gradually building up to cell behaviour. This approach has met success in
the cytoskeleton over the past decade in many fields, in each case moving
from molecular models to intracellular structures to cell function: actin,
fillopodia and lamellopodia, and cell motility [27, 79]; microtubules, the
mitotic spindle and mitosis [55, 75, 109]; the bacterial actin homologues,
the MreB helix and bacterial growth [6]; and bacterial FtsZ, the cytokinetic
Z-ring and bacterial division [4].

Insight from theoretical and experimental studies of these systems in-
forms the present study of plant CMTs. In all cases, mechanics, biochem-
istry and self-organization give rise to a vital cell function. There are striking
parallels between CMTs, which are involved in regulating the machinery for
lateral cell wall (cellulose) insertion, and bacterial actin MreB [5, 6], which
is also involved in regulating the machinery for lateral cell wall (peptidogly-
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Figure 6.1: The pathway of CMT organization. MAPs such as MAP65 give
rise to MT-MT interactions. CLASP combines with cell geometry to in-
duce boundary conditions on the MTs. Together, MT-MT interactions and
boundary conditions lead to the organization of the CMT array. Boxes indi-
cate corresponding chapters in this thesis. This is part of a larger pathway
of plant morphogenesis, shown in Fig. 2.2, in which this figure is a detail of
the green box.
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6.3. The appeal of modelling plant cortical microtubules

can) insertion. In both cases, the geometry of the stiff cell wall applies stress
to the cytoskeletal elements, which self-organizes into well-defined patterns
(parallel arrays and helices, respectively).

6.3 The appeal of modelling plant cortical
microtubules

The plant CMT array provides an elegant system for mathematical mod-
elling for many reasons:

• its two-dimensional nature

• its constituent parts, such as microtubules and cell membranes, are
well-studied and relevant in other contexts,

• the analogies with other coarsening systems and aggregation phenom-
ena, and

• its role in agriculture and biotechnology in governing plant growth and
its relationship with cellulose.

Indeed, cellulose is a major component of the world economy, as the primary
ingredient of the paper we print on, the cotton and rayon we wear, the
dietary fibre in the food we eat, and possibly eventually in the cellulosic
biofuel we use for transportation [19, 104].
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Appendix A

PDE models and the mean
field approximation

A.1 The five-dimensional system

To develop a differential equations model of the MT-MT interactions zip-
pering and collision-induced catastrophe, we can augment the Dogetrom-
Leibler equations with interaction terms. Here, for simplicity, I consider the
two-state model, however generalization to the three-state model is straight-
forward.

Since MTs are spatially extended polymers, one MT occupies a contin-
uum of points in the (x, y) plane. Furthermore, one MT will collide with
MTs at different angles. Thus, the model below must contain non-local
terms in both (x, y) and θ.

Let p(x, y, θ, l, t) be the density of MTs with plus ends at (x, y), length
l sitting at an angle θ. We define θ so that a horizontal MT has θ = 0. The
minus end will therefore be at (x− lcos (θ), y − lsin (θ)).

∂pg
∂t

= −vg
(

cos (θ)
sin (θ)

)
· ∇pg − (vg − vm)

∂pg
∂l

+ frps − fcpg (A.1)

− (CAT + ZIPaway)pg + ZIPto

∂ps
∂t

= vs

(
cos (θ)
sin (θ)

)
· ∇ps + (vs + vm)

∂pg
∂l
− frps + fcpg (A.2)

+ CATpg. (A.3)

The advection terms in both the growing and shrinking populations rep-
resent MT elongation and depolyerization. The linear exchange terms rep-
resent catastrophe and rescue, just as in the Dogetrom-Leibler model. The
interaction terms representing collision induced catastrophe, zippering away
from the angle θ and into the angle θ are
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A.2. Spatial homogenization

CAT = kcat vg

∫
Ωc

∫ ∞
0

∫ l′

0
pg+s(x+ σcos (θ − θ′),

y + σsin (θ − θ′), θ − θ′, l′)|sin θ′| dσ dl′ dθ′

ZIPaway = kzip vg

∫
Ω′c

∫ ∞
0

∫ l′

0
pg+s(x+ σcos (θ − θ′),

y + σsin (θ − θ′), θ − θ′, l′)|sin θ′| dσ dl′ dθ′

ZIPto = kzip vg

∫
Ω′c

pg+s(x, y, θ − θ′, l)|sin θ′| dθ′

×
∫ ∞

0

∫ l′

0
pg(x+ σcos (θ), y + σsin (θ), θ, l′)dσ dl′

The catastrophe region is Ωc = [θZ , π−θZ ]∪ [π+θZ , 2π−θZ ]. The boundary
conditions in l are pg(x, y, θ, 0, t) = kn/(2πvg) and p→ 0 as l→∞.

This system is second-order but is inherently five-dimensional: two spa-
tial coordinates describing location on the membrane, one describing the
length distribution, one describing the angle distribution, and time. This
makes the nonlinear system difficult to numerically integrate or to analyze.
For this reason, it is desirable to have a low-dimensional model that gives
rise to orientational order.

A.2 Spatial homogenization

One possible way of simplifying the system is to remove the MT length di-
mension. I argue against this length-wise homogenization with the following
thought experiment. If a subpopulation of N1 microtubules have angle θ1,
and another smaller subpopulation has N2 < N1 MTs at angle θ2, then the
rate of collisions with Subpopulation 1 polymers incident upon Subpopula-
tion 2 barriers is ∝ N1 × l̄2N2 where l̄2 is the average length of an MT in
Subpopulation 2, while the rate of collisions of Subpopulation 2 polymers
incident upon Subpopulation 1 barriers is ∝ N2× l̄1N1. That is, the number
of collisions with one MT incident upon another is proportional to the length
of the barriers. If we ignore length, then the collisions with Subpopulation
1 MTs against Subpopulation 2 MTs will be exactly balanced by Subpopu-
lation 2 MTs against Subpopulation 1 MTs. This symmetry eliminates any
hope for the emergence of a dominant angle.

Another way of simplifying the full five-dimensional system is to assume
spatial uniformity. Here, I will show that this direct spatial homogeniza-
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A.2. Spatial homogenization

tion leads to a system of differential equations that does not give rise to
orientational order.

If we assume the solution is uniform in space, Apg(x, y, θ, l, t) = Ng(θ, l, t)
where A is the cell surface area and Ng now has units rad−1 µm−1.

∂Ng

∂t
= −(vg − vm)

∂Ng

∂l
+ frNs − fcNg − (CAT + ZIPaway)Ng + ZIPto

∂Ns

∂t
= +(vs + vm)

∂Ng

∂l
− frps + fcNg + CAT ·Ng

CAT = pcat
vg
A

∫
Ωc

∫ ∞
0

l′Ng+s(θ − θ′, l′)|sin θ′| dl′ dθ′

ZIPaway = pzip
vg
A

∫
Ω′c

∫ ∞
0

l′Ng+s(θ − θ′, l′)|sin θ′| dl′ dθ′

ZIPto = pzip
vg
A

∫
Ω′c

Ng(θ − θ′, l) |sin θ′| dθ′ ×
∫ ∞

0
l′Ng+s(θ, l′) dl′

A.2.1 Asymptotic expansion in p

We can approximate the equilibrium solution in the limit where pzip << 1.
We expand N(θ, l) = N (0) + pN (1) + ... to obtain for the O(1) problem the
interaction-free Dogterom and Leibler model with solution

N0
g (θ, l) = Ke−l/λ0 (A.4)

N0
s (θ, l) =

vg
vs
Ke−l/λ0 (A.5)

where K = kn/(2πvg) and

λ0 =
vgvs

vsfc − vgfr
. (A.6)

The O(p) problem is

0 = −fcN (1)
g + frN

(1)
s − vgN (1)

g

′
(A.7)

− vg
A
K2e−l/λ0

∫
Ω′c

∫ ∞
0

l′
(

1 +
vg
vs

)
e−l
′/λ0 |sin θ′| dl′ dθ′ (A.8)

+
vg
A
K2

∫
Ω′c

e−l/λ0 |sin θ′| dθ′ ×
∫ ∞

0
l′
(

1 +
vg
vs

)
e−l
′/λ0 dl′ (A.9)

= −fcN (1)
g + frN

(1)
s − vgN (1)

g

′
(A.10)
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with solution

N (1)
g (θ, l) = K1e

−l/λ0 (A.11)

N (1)
s (θ, l) =

vg
vs
K1e

−l/λ0 (A.12)

Because the boundary conditions are independent of p, K1 = 0 and there is
no first-order correction. All higher order corrections are identically zero.

For catastrophe only, the O(1) problem is identical to above (Eq. A.4-
A.5). The O(p) problem is

0 = −fcN (1)
g + frN

(1)
s − vgN (1)

g

′
(A.13)

− vg
A
N (0)
g

∫
Ωc

∫ ∞
0

l′N (0)
g (θ − θ′, l′)|sin θ′| dl′ dθ′ (A.14)

0 = +fcN (1)
g − frN (1)

s + vsN
(1)
g

′
(A.15)

+
vg
A
N (0)
g

∫
Ωc

∫ ∞
0

l′N (0)
g (θ − θ′, l′)|sin θ′| dl′ dθ′. (A.16)

Inserting Eq. A.4-A.5 we obtain

0 = −fcN (1)
g + frN

(1)
s − vgN (1)

g

′
(A.17)

− vg
A
Ke−l/λ0

∫ ∞
0

l′K

(
1 +

vg
vs

)
e−l/λ0 dl′

∫
Ωc

|sin θ′| dθ′ (A.18)

= −fcN (1)
g + frN

(1)
s − vgN (1)

g

′
(A.19)

− vg
A
K2

(
1 +

vg
vs

)
e−l/λ0λ2

0

∫
Ωc

|sin θ′| dθ′. (A.20)

Inserting the integral of the kernel,
∫

Ωc
|sin θ′| dθ′ = 4 cos θZ , we obtain

−fcN (1)
g + frN

(1)
s − vgN (1)

g

′
= Ce−l/λ0 (A.21)

+fcN (1)
g − frN (1)

s + vsN
(1)
g

′
= −Ce−l/λ0 (A.22)

where

C = 4
vg
A
K2

(
1 +

vg
vs

)
λ2

0 cos θZ . (A.23)

The solution is

N (1)
g (l) = −C l e−l/λ0 (A.24)

N (1)
s (l) = +

vg
vs

C l e−l/λ0 . (A.25)
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A.2. Spatial homogenization

These functions have extrema at λ0. These functions are also independent
of θ. In the perturbation expansion, interactions at O(p) are felt through
the O(1) solutions, which are independent of θ. Thus, this approach will
never lead to angular non-uniformity.

A.2.2 Discussion

The goal here is not to find a model that aggregates in the orientational
dimension, but rather to find one that predicts the self-organizing regimes
of the collision-induced catastrophe model and the zippering model in agree-
ment with large-scale simulation presented in Chapter 4. Simple dimensional
scaling arguments fail to answer this question, and a partial differential equa-
tions model derived from the Eulerian version of the model fails to exhibit
self-organize.

If the full five-dimensional system is an exact Eulerian version of the
rule-based model, without stochasticity, then integration of Eqs. A.3 should
exhibit aggregation. With stochasticity removed, the bifurcation between
self-organization and the lack of self-organization should be sharper. Nu-
merical integration of a five-dimensional system of two equations is difficult,
and a lower-dimensional version is desirable.

104



Appendix B

Orientational order
parameters in 2D

B.1 Introduction

A population of directed polymers, described either individually by lengths
and angles, (li, θi), i = 1..N , or density p(θ, l), exhibiting directional aggre-
gation are said to be in the nematic phase. To describe the extent of order-
ing, researchers define a single number, called an order parameter S. Often,
S = 0 indicates a perfectly isotropic population, while S = 1 describes a
perfectly nematic population. However, different researchers studying the-
oretical models of cortical MT organization have chosen slightly different
order parameters. Here, I show that three of these order parameters are
equal.

For convenience, I use the density description p(θ, l), and assume that
MTs are weighted linearly in their length, thus the order parameter only
depends on

p(θ) =
∫ ∞

0
p(θ, l)dl/

∫ π/2

−π/2

∫ ∞
0

p(θ, l)dldθ. (B.1)

This quantity is called k(θ) in Tindemans et al. [126]. Note Baulin et al. [16]
weight MTs quadratically in weight, which is undesirable when considering
MTs that can develop kinks after entrainment, edge interactions or severing.

B.2 Defining four order parameters

For Allard et al. [3] (and a generalization of Baulin et al. [16]), we define
the cost function at a given angle

σ0(Ω) = 〈cos2(θi − Ω)〉. (B.2)

The angle Ω that minimizes the cost is considered the dominant angle. We
can compute the dominant angle by expanding Eq. B.2. With the help of
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B.2. Defining four order parameters

trigonometric identities, we find

Ω =
1
2

arctan
(
〈sin 2θi〉
〈cos 2θi〉

)
, (B.3)

If instead of the cost function in Eq. B.2, we use the cost function

σn(Ω) = 〈lncos2(θi − Ω)〉. (B.4)

for n = 1, 2 then we obtain length-weighted or square-length weighted ver-
sions of σ0, and an equivalent dominant angle Ω. Once we have computed
the dominant angle Ω, we define the order parameter Sn to be

Sn =
σn(Ω)− σn(Ω + π/2)
σn(Ω) + σn(Ω + π/2)

. (B.5)

Setting n = 2 gives the order parameter used in [16]. For n = 1,

S1 =
〈l(cos2(θ − Ω)− sin2(θ − Ω))〉

〈l〉
(B.6)

or, if the dominant angle is Ω = 0,

S1 =
∑
l (cos2θ − sin2θ)∑

l
. (B.7)

The reason we always use squared trig functions is that it ensures the dif-
ferentiability that allows Eq. B.3 to be used to find the dominant angle. In
terms of density, this is

SA =
∫ π/2

−π/2
p(θ)(cos2θ − sin2θ)dθ, (B.8)

identical to SS . Shi and Ma [121] derive an order parameter based on the
classical nematic order parameter [28]. Define a matrixQαβ =

∫
p(û)(2uαuβ−

δαβ)dû where uα and uβ are the orthonormal components of a unit vector
û. The classical nematic order parameter S is the largest eigenvalue of this
real, symmetric matrix. In three dimensions, after much simplification, this
is

S =
3
2

∫ π

−π

∫ π/2

−π/2
p(θ, φ) cos2θ sin θ dθdφ− 1

2
(B.9)
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B.2. Defining four order parameters

while in two dimensions, it is

SS =
∫ π/2

−π/2
p(θ) cos (2θ)dθ (B.10)

=
∫ π/2

−π/2
p(θ)(cos2θ − sin2θ)dθ. (B.11)

which is identical to SA. Tindemans et al. [126] use

ST =

∣∣∣∣∣
∫ π/2

−π/2
p(θ) exp(2iθ)dθ

∣∣∣∣∣ (B.12)

=

(∫ π/2

−π/2
p(θ)cos (2θ)dθ

)2

+

(∫ π/2

−π/2
p(θ)sin (2θ)dθ

)2
1/2

. (B.13)

While, once again, this appears distinct from the other order parameters,
note that we can assume Ω = 0 without loss of generality. From Eq. B.3,
this means

1
2

arctan
(
〈sin 2θi〉
〈cos 2θi〉

)
= 0 =⇒ 〈sin 2θi〉 = 0 (B.14)

and the second term in Eq. B.13 vanishes, thus ST is also equal to SA and
SS . This form is more convenient, since it does not require prior calculation
of the dominant direction.

Finally, Eren et al. [48] use the discrete information entropy of the dis-
crete distribution P (θi),

E = −
∑
i

p(θi) ln(p(θ)) (B.15)

which, in contrast to the above order parameters, is E = 0 for a perfectly
aligned array and E = ∆θi/(θmax−θmin) for a perfectly uniform array, where
∆θ = 1◦ in their study. It is tempting to generalize discrete information
entropy to continuous distributions,

E = −
∫ π/2

−π/2
p(θ) ln(p(θ))dθ (B.16)

but this quantity has several unappealing properties, such as a value that
diverges to −∞ as p(θ)→ δ(θ−Ω). This is a generic property of continuous
entropy [114].
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