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Abstract

MreB is an actin-like protein that forms a helix running the length of cylindrical

bacterial cells. A quantiative model of the helix is presented. Individual polymers

that make up the helical cables are represented by simple force-dependent polymer

models bundled into a supramolecular array. Boundary conditions and external forces

are provided by a global elasticity model that represents the cables as flexible rods

buckled into a helix inside the confinement of the cell wall. Variational techniques

and stochastic simulation are used to obtain a quantitative relationship between the

pitch of the helix, the total abundance of MreB and the thickness of the cables. Finite

element analysis is performed to simulate the elastic dynamics of the MreB cables and

a hypothesis for the external forces acting upon the cables is proposed. The model

has implications for the de novo establishment of the cables, cell growth, and for

MreB’s role in macromolecular trafficking, the polarization of Caulobacter crescentus

and cell wall synthesis.
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Chapter 1

Introduction

“It is truly breathtaking that within a period of 5 years a longstanding

‘truth’ about one of the major life forms of the planet has been over-

turned.” [77]

Life on Earth is divided into two empires: the eukaryote empire, which includes all

plants, animals, yeast and algae, and the prokaryote empire, which includes bacteria

and archaea. The ‘truth’ the authors were referring to is the belief that prokaryotes

lack a key ingredient that endows other cells with shape, motility and function, called

the cytoskeleton. This was considered one of the fundamental differences between

eukaryotes and prokaryotes, and one of the factors that allowed eukaryotes to evolve

in size and complexity unseen in the prokaryotes. The discovery of a protein called

MreB in 2001 led to the collapse of this dogma.

MreB forms a helix running the length of cylindrical cells. It is present in nearly

all cylindrical-shaped bacteria, and is implicated in several vital functions. Little is

known about the arrangement of molecules that make up the helix, although it is a

cousin of actin, the protein that forms the cytoskeleton in eukaryotes.

The helix has raised many open questions. What causes the helical configuration of

MreB? What controls the pitch of this helix? How does MreB mechanistically perform

its many functions? The tools of physics are appropriate both for testing possible

explanations regarding MreB and its functions, and for raising new questions. These

tools range from stochastic simulation at the molecular level to continuum elastic

models at the supramolecular level. This thesis is an attempt to build a quantitative

model and address these questions.

1
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1.1 Organization of this thesis

Chapter 2 presents biological background about the actin cytoskeleton in eukaryotes,

including the Brownian ratchet model of force generation. We review the recent

experimental information about MreB, and other relevant cytoskeletal elements.

Chapter 3 develops a model of MreB. In Sec. 3.1 we state the polymerization dy-

namics equation and how they are used to represent the MreB bundle. In Sec. 3.2 we

introduce a standard elastic Hamiltonian and use the Cosserat formalism to represent

the MreB bundle as an elastic body.

Chapters 4 and 5 describe the results of this model. In Chapter 4, a helical

configuration is assumed and the polymerization dynamics are explored analytically

and by stochastic simulation. Force generation by a stochastic polymer bundle is

discussed in Sec. 4.3. The implications of the model for macromolecular transport

are discussed in Sec. 4.6. Chapter 5 presents finite element analysis of the MreB

filament inside a cell under various boundary conditions. Three simple models are

explored, and Sec. 5.6 discusses their implications for cell wall synthesis.

Chapter 6 contains overall conclusions, summarizes the main results and suggests

directions for future work.



Chapter 2

Biological Background

2.1 The actin cytoskeleton in eukaryotes

Many biological functions require something to move. For example, the learning and

memory-forming that takes place as this sentence is read requires the neurons in the

brain of the reader to have grown in a particular arrangement during development.

The physical mechanism leading to this motility, and many other biological functions,

is driven by a protein called actin [79].

Actin is ubiquitous, highly-conserved, and forms two-stranded polymers, which in

turn form diverse supramolecular structures inside all eukaryotic cells. These struc-

tures are collectively known as the actin cytoskeleton. The actin cytoskeleton extends

throughout the cytoplasm like a spider’s web (Fig. 2.1). It organizes cell shape and cell

polarity, drives cell division, organizes subcellular transport and muscle contraction

in mammals, and gives rise to many kinds of cell motility.

The actin cytoskeleton organizes subcellular transport of vesicles and other or-

ganelles by serving as a track for myosins, which are motor proteins that step along

the actin cables by hydrolyzing ATP. By attaching a load to the myosin, the cell

can transport the load along the actin cable with speeds of ≈ 200 − 400 nm/ s [71].

By attaching a myosin to two opposing actin cables, the cell can pull the two cables

together with forces of 1− 10 pN [39], giving rise to muscle contractions.

Actin itself can polymerize against a load, such as a cell membrane. The cell mem-

brane can thus develop protrusions, called fillopodia and lamellopodia. By pulling up

the cell behind this protrusion, cells such as nematode sperm, keratocytes and neu-

trophiles can crawl with speeds up to several microns per second [57]. An explanation

of the mechanism of this force generation, by Mogilner and Oster in 1996 [61], was a

major contribution of computational cell biology [67]. It was preceded and followed

by a decade of quantitative modeling of actin ranging from molecular scales [65] to

3
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Figure 2.1: The actin cytoskeleton, seen through GFP fluorescence in a eukaryotic
cell. Taken from [67].

bulk, continuum elastic regimes [87]. We describe Mogilner and Oster’s model here.

2.1.1 Polymerization models and the elastic Brownian ratchet

Actin is a protein that assembles with many copies of itself to form polymers. Addi-

tion and dissociation of monomers occur at the ends of the asymmetric actin fil-

ament, both at the “barbed” (“+” or fast-growing) tip and the “pointed” (“−”

or slow-growing) tip. The kinetics of actin polymerization are well-characterized

by concentration-dependent polymerization rates kb
onc and kp

onc at the barbed and

pointed ends, respectively, where c is the cytoplasmic monomer concentration, and

concentration-independent depolymerization rates kb
off and kp

off. This is summarized

in Fig. 2.2A.

The average growth rate of the tips are

vb = δ(kb
onc− kb

off) (2.1)

vp = δ(kp
onc− kp

off) (2.2)

where δ is the length increase due to the addition of one monomer. The total length

of the filament will grow above, and shrink below, a critical concentration,

cc =
kb

off + kp
off

kb
on + kp

on
. (2.3)
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Figure 2.2: (A) Polymerization model, including concentration-dependent “on” rates
and independent “off” rates at the barbed and pointed ends. (B) elastic Brownian
ratchet mechanism for polymerization against a load force F .

The asymmetry between the polymerization and depolymerization rates at barbed

and pointed ends leads to treadmilling, in which the filament length remains constant

while depolymerization from the pointed end is balanced by polymerization at the

barbed end [1]. The treadmilling rate is [20]

λtread =
kp

offk
b
on − kb

offk
p
on

kp
on + kb

on

. (2.4)

If the filament position is fixed, treadmilling results in a net advection of all polymer-

ized monomers towards the pointed end.

When an actin filament encounters a load, F , it does not simply stall. Instead,

thermal undulations of the filament will occasionally allow another monomer addition

to take place. In this situation, the polymerization rate reduces to kb
on → kb

onp(F )

where p(F ) is the steady-state probability of a gap of width δ between the filament

tip and the load. In the regime where thermal undulations are fast compared to poly-

merization, the load is always pushing against the tip and this probability is simply

given by a Boltzmann factor, p(F ) = exp (−Fδ/kBT ) where Fδ is the work done

against the load by the assembly of one additional monomer, and kBT = 4.1 pN nm

is the thermal energy unit [60].

Upon first consideration, this is in violation of the second law of thermodynamics

famously described by Richard Feynman in a thought-experiment of the “thermal
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ratchet” [27]. Feynman imagined vanes attached to a shaft with a one-way ratchet,

shown in Fig. 2.3. As molecules bombarded the vanes, the ratchet would turn one

way, harnessing thermal energy to do useful work. However, Feynman argued that

the pawl snapping against the teeth of the wheel (giving rise to the irreversibility of

the ratchet) is necessarily dissipating energy, and soon the thermal fluctuations of

the pawl would allow the teeth to pass in either direction. Thermal ratchets cannot

perform useful work. How, then, can actin generate a force? The resolution lies

in the fact that living cells are open systems far from equilibrium. To make this

distinction, Mogilner and Oster [61] called their actin model the “elastic Brownian

ratchet”. The “pawl” that gives rise to the asymmetry of actin polymerization is the

chemical energy difference between free monomers and polymerized monomers, and

the ATP hydrolysis of the actin subunits after addition. The continually renewed

ATP binding to the actin monomers that are diffuse in the cytoplasm allows the

polymer to perform work, even in steady-state.1

Figure 2.3: Feynman’s thermal ratchet. Taken from [27].

Subsequent experiments validated the force-velocity-concentration relationships

described above [68]. The ratchet mechanism’s efficiency can be estimated by the

chemical binding free energy for one monomer, ∆G = kBT ln (konc/koff). For typical

parameters in eukaryotes, this is roughly 20 pN nm, while the work performed against

1Note that ATP is only required for the polymer to perform work in steady-state. The work
itself requires only polymerization, as is strikingly evident in individuals with sickle cell anemia. In
such cells, hemoglobin (which has no ATP activity) polymerizes much like actin, forcing the cell
membrane out and forming spiky projections [83].
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the load is Fδ ≈ 11.4 pN nm, giving an efficiency of ≈ 0.68 [63].

In vivo, actin dynamics are regulated through over 126 “actin-binding proteins”

[8,70] that variously control cross-linking, bundling, filament nucleation, end-capping,

filament cutting, monomer sequestration and desequestration. Four such actin-binding

proteins are listed here:

• ADF/cofilin is a depolymerizing factor that speeds up depolymerization of actin

by binding to two adjacent subunits and modifying their twist slightly, increas-

ing their propensity to separate and thus their koff by up to 20 times [70].

• Profilin binds to free monomers of actin, sequestering them and allowing eu-

karyotic cells to maintain a cytoplasmic concentration of monomers much higher

than the critical concentration. By regulating the amount of actin sequestered

by profilin, cells using actin-driven motility can regulate their speed [34,68].

• Formin binds to the barbed end of actin. It can nucleate new polymers, and

also control their growth while remaining processively attached at the barbed

end. In the presence of profilin, formin augments the barbed growth rate by 10

to 15 times, and can mediate a force of several piconewtons [46].

• Fimbrin, villin, fascin and epsin all bundle actin filaments, leading to bulk cables

of actin that are several polymers thick [34]. Fimbrin, in particular, only bundles

polymers that face the same direction, leading to a polarized bundle [43].

2.2 The MreB helix in prokaryotes

Until recently, it was believed that prokaryotic cells lack actin-like cytoskeletons.

However, in 2001, MreB was identified as a protein with a cytoskeleton-like role in

many bacteria. The subsequent years were a period of rapid advance for microbiology.

(For excellent reviews see [8, 59,77].)

The rapid advance was preceded by a pioneering computational search of possible

protein structures in 1992, in which the protein MreB was predicted to be an actin

homologue [6]. Even though the actual sequence similarity was only ≈ 15% (less

than the 20% typically used to identify homologues [8]), Bork et al. predicted MreB
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would fold in a similar way to actin, and thus might be functionally homologous. It

was not until after the advancement of fluorescence microscopy techniques [59] that,

in 2001, Bork et al.’s predictions were confirmed and MreB was shown to play a

cytoskeleton-like role in Bacillus subtilis [41].

MreB assembles into a helical structure extending the length of rod-shaped cells,

as shown in Fig. 2.4. It was identified in Escherichia coli, Caulobacter crescentus,

Rhodobacter sphaeroides and subsequently in all rod-shaped prokaryotes for which the

genomes were known [12] (except Corynebacteria which grows exceptionally slowly),

and in several non-rod-shaped species. It is vital, and is highly conserved between

species, meaning it probably originated before the common ancestor of all prokary-

otes. It is believed to have originated even before the divergence of prokaryotes and

eukaryotes, making it the universal ancestor of actins [86].

In Gram-positive species, which have thicker cell walls, several MreB paralogues

are often present. In B. subtilis, which is Gram-positive, three distinct paralogues

exist: MreB, Mbl (named MreB-like) and MreBH. In Gram-negative species, such as

E. coli and C. crescentus, only MreB is present.

In vivo, MreB has been observed by tagging the mreB gene with GFP (green

fluorescent protein), and then observing its spatial structure using fluorescence mi-

croscopy. There is much disagreement between quantitative measurements. The

helical pitches for MreB or Mbl, without other paralogues, are 0.73 ± 0.12 µm and

1.7±0.28 µm, respectively [41]. Measurements on co-localized MreB, Mbl and MreBH

report pitches of 0.6 ± 0.17 µm [15]. In E. coli, pitches of 0.46 ± 0.08 µm have been

reported [50]. In all cases, the helices are dynamic, with elements moving along the

main helix at reported speeds ranging from 6.0 nm/ s [44] to 0.07 µm/ s [80]. Fluores-

cence photobleaching (FRAP) experiments have been performed, where a part of the

cell is exposed to an intense, focused beam of light that permanently deactivates the

GFP tags for affected molecules. These experiments show that the helix is continually

being remodelled, with a half-life of about 8 minutes and no obvious polarity [9]. The

helical structure has also been observed to condense into a ring at midcell near the

time of division in E. coli [76], C. crescentus [29] and B. subtilis (where only MreBH

coils) [10].
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The MreB helix appears not to be a single polymer extending the length of the

cell but rather a bundle of individual polymers [9, 28]. More will be said regarding

the microscopic composition of the helix in Sec. 3.1.2. Quantitative immunoblotting

has been used to measure the molecular abundance of various MreBs. In B. subtilis,

there are roughly 8000 MreB monomers and 12000 − 14000 of Mbl [41] while E.

coli has roughly 17000− 40000 monomers of MreB [50]. Neglecting the cytoplasmic

fraction of monomeric MreB, these abundances suggest a bundle thickness of about

10 protofilaments [21].

As mentioned above, MreB is vital in E. coli, B. subtilis and C. crescentus. It

appears to play a central role in several vital cell functions including cell wall syn-

thesis, macromolecular transport, chromosome segregation and the polarization of C.

crescentus. Little is known about the mechanism through which MreB performs these

roles, each of which is discussed below.

2.2.1 Cell wall synthesis

The mre genes had been known to play an important role in cell shape and controlling

synthesis of the the cell wall. The cell wall is a giant sacculus made of peptidoglycan,

also known as murein (mre was named after “murein related cluster e”). The hard

peptidoglycan cell wall is a primary determinant of cell shape, since an isolated sac-

culus retains its shape (although deflated) [77]. The cell wall has an elastic modulus

of 2.7 × 107 N/m2 in E. coli [93]. As mentioned above, Gram-positive species have

even thicker cell walls, and the elastic modulus is probably larger still.

In B. subtilis Mbl is necessary for proper insertion of new peptidoglycan, which

occurs in a helical fashion [12], while MreBH is necessary for the localization and

function of the cell wall hydrolase LytE that is believed to recycle the outer layers

of the cell wall, also in a helical fashion [10]. In addition, mreB mutants are wide,

rounded and usually not viable [30]. Mutants without MreB grow spherical and round,

and some eventually lyse under their own stress. It is likely that MreB regulates cell

shape by organizing the machinery used for cell wall growth.

It has been suggested that MreB (and Mbl in B. subtilis) forms a complex with

transmembrane proteins MreC and MreD, and with penicillin-binding proteins, which
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are the machinery necessary for insertion of new peptidoglycan into the cell wall [9,77].

Evidence for this suggestion is mixed: MreB does not always colocalize with MreC

in C. crescentus [17]. It appears likely that helical bundles of MreB affect the spatial

pattern of these associated proteins.

2.2.2 Macromolecular transport

Many proteins need to be localized to the poles of the cell in order to function prop-

erly. These include proteins involved in some anatomical functions, such as synthesis

of flagella or pili, or other motility-associated apparatus such as the actin comet-tail

nucleating proteins in Shigella flexneri. The proper localization of many of these

proteins depends on MreB. Disrupting MreB leads to an immediate loss of polar lo-

calization to a host of proteins including the chemotaxis protein Tar and the virulence

factor IcsA in E. coli [75], and three integral membrane proteins (PleC, DivJ, CckA)

in C. crescentus [35]. Polar localization in C. crescentus was disrupted by either

underexpression or overexpression of MreB. When normal MreB expression was re-

turned polar localization was re-established within 4 hours [35]. The time of loss of

localization is too short for the long-term effects of MreB loss on cell wall shape to be

the mediating factor. This suggests that MreB has a continual role in either direct

polar trafficking of these proteins or in the maintenance of landmarks necessary for

their proper positioning [8].

Several possibilities exist for the mechanism of polar localization. The first is that

MreB plays the same role as actin in eukaryotic macromolecule transport. Actin is a

passive track along which myosin motor proteins carry macromolecules. Alternatively,

segments of the MreB helix may themselves move toward the poles, carrying their

loads with them. Another possibility is that MreB affects polar localization indirectly,

for example by initiating polar markers where its free ends are located [77]. We explore

these possibilities in Sec. 4.6.

2.2.3 Polarization of C. crescentus

Cells of the species C. crescentus have a unique morphology and a unique cell cycle.

Although they are rod-shaped, the two poles are distinct: during most of the cell
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cycle, one pole is adorned with a stalk while the other has a flagellum. Upon division,

the two daughter cells are also distinct, since one cell retains its stalk (the “stalked”

cell) while the other uses its flagellum to swim (the “swarmer” cell). Eventually, the

stalked cell grows another flagellum at its “swarmer” pole, while the swarmer sheds

its flagellum and grows a stalk, and both cells are ready for another round of division.

Orchestrating this complex cell cycle requires that the polar proteins in C. cres-

centus be directed towards distinct poles in different stages of its life cycle. For

example, PleC is localized to swarmer poles in swarmer and predivisional cells, DivJ

is localized to stalked poles, while CckA is localized to both poles of predivisional

cells [48]. This polarization is MreB-dependent. After MreB expression is disrupted

and restored, PleC and DivJ are restored randomly to either pole [48]. This suggests

that MreB may be polarized within C. crescentus and that the polarity of the MreB

helix is randomly restored after its disruption.

2.2.4 Chromosome segregation

MreB’s role in chromosome segregation in E. coli, B. subtilis and C. crescentus is

reflected by interactions with both RNA polymerase [48] and SetB, a chromosome

defect suppressor [23]. MreB drives a fast initial polar translocation of the origin-

proximal region, oriC, of newly-replicated DNA [36]. Time-lapse microscopy has

shown that the MreB-dependent polar transport of oriC in B. subtilis traveled 1.4µm

in 11 minutes, with an average speed of 2.8 nm/s and a peak speed of 4.5 nm/s [89].

After this initial translocation, disruption of MreB does not affect the segregation of

the rest of the chromosome.

2.3 Analogies

Insight into unknown aspects of the MreB helix can be gained through analogies with

other biochemical elements in other species [28]. We summarize aspects of two other

systems that are often discussed when considering MreB.
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2.3.1 Actin cables in Yeast

Actin in yeast assembles into cables [43], that appear very similar to initial obser-

vations of MreB. These actin cables appear to have variable numbers of filaments

along their lengths and show no obvious polarity. Thick and thin regions alternate

along cables, as opposed to constant thickness or progressive tapering. These struc-

tures require the actin-binding protein fimbrin, which bundles and polarizes actin

filaments.

When a depolymerization agent is added, they appear to depolymerize by losing

subunits at 5 − 10 s−1, which agrees with kb
off + kp

off measurements in vitro. Cables

appear to depolymerize from their ends and also from points along their middle.

Thus, the consistent model of the supramolecular structure is one in which a cable

contains a number of actin filaments that overlap and are shorter than the cable but

not very short (since depolymerization patchiness is observed during disassembly).

2.3.2 The FtsZ ring in bacteria

The first cytoskeleton-like element discovered in prokaryotes was the protein FtsZ [13],

which is essential for cell division and present in nearly all prokaryotes. FtsZ is

the earliest player in cell division, when it forms a ring at midcell that initiates the

assembly of the “divisome” that eventually divides the mother cell into two daughters.

Only 30% of FtsZ subunits are incorporated into the ring, which means the ring

is only 6 to 7 protofilaments thick. The in vivo concentration of FtsZ has been

reported as 11 µM, which is higher than its critical concentration and thus implies

that most subunits are polymerized. A favored model is an isodesmic assembly model

in which protofilaments disassociate and re-associate within the ring, as well as to

and from the cytoplasm. At 180 protofilaments of ∼ 80 subunits in length, around

56 protofilaments would comprise the FtsZ ring. In an alternate (but not mutually

exclusive) model, cytoplasmic FtsZ exists as monomers which polymerize onto the

multi-stranded bundles in the ring [81].
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2.4 Other helices in prokaryotes

Since the first visualization of the MreB helix in 2001, a large number of helices have

been reported in a wide range of cellular components in prokaryotes.

The Min proteins that oscillate to establish the midcell division site [75] form a

helix with a density of ≈ 2.2 ± 0.4 turns per micron, distinct from MreB. Genetic

manipulation has shown no direct dependence between the two.

The Sec machinery is a general system for secreting proteins from the cytoplasm

to the environment [32]. It appears in a helical pattern on the cell envelope with a

pitch roughly double that of MreB in E. coli [78].

FtsZ has also been observed in a helix [82] when not condensed into the Z-ring,

and as previously mentioned, nascent peptidoglycan is helical. Among other elements

that have been reported to form helices are the cytoplasmic protein ParA [18], the

lipopolysaccharides that make up the outer leaflet of the outer membrane [32], and

outer membrane proteins including LamB [33]. SetB, the DNA-associated protein

mentioned in Sec. 2.2.4, also forms a helix and may have an interaction with MreB [23].

Helices are becoming ubiquitous in prokaryotes. The understanding of MreB we

seek in this thesis may provide a theoretical framework for understanding the in-

dependent helices and perhaps a literal framework for the helices that depend on

MreB.
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A

B

C

Figure 2.4: The MreB helix in vivo, tagged with fluorescent GFP and visualized
through fluorescence microscopy. A) in B. subtilis, taken from [22]. B) in C. crescen-
tus, from [29]. C) in E. coli, from [75].



Chapter 3

Model

In this chapter, we develop a framework to model the MreB helix in rod-shaped

cells. The basic model has only one ingredient, MreB (or its homologues), which

is considered at three scales. First, the simple polymerization models described in

Sec. 2.1.1 are modified for the prokaryotic regime and for what is experimentally

known about the differences between MreB and actin. Then, these polymers are

combined into a putative ultrastructure in order to represent the in vivo cables,

which we assume are composed of several polymers in a bundle. Finally, the cables

are considered as a semi-flexible elastic body confined within the rod-shaped cell.

3.1 Polymerization Dynamics

In our model, each polymer, or protofilament, has a barbed tip at location xb
i and

pointed tip at location xp
i . If xb

i > xp
i , then the protofilament is facing right, otherwise

it is facing left. The locations are only allowed to be integer multiples of the subunit

spacing, a0 = 5.1 nm [86]. One difference between MreB and actin is the lack of helical

twist inherent in the polymer [86]. In actin, the polymer is always two-stranded, with

two rows of subunits twisted around each other with an angle of 65◦ the length gained

through the addition of one subunit is δ = a0cos 65◦ = 2.2 nm [61]. Since MreB

forms straight protofilaments without the double helix pattern, the length change by

addition or subtraction of one monomer is exactly a0.

The evolution of a protofilament occurs through four stochastic processes. For the

moment assuming the filament faces right, these are

• barbed polymerization, xb
i → xb

i + a0 with rate kb
onc,

• pointed polymerization, xp
i → xp

i − a0 with rate kp
onc,

• barbed depolymerization, xb
i → xb

i − a0 with rate kb
off, and

15
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• pointed depolymerization, xp
i → xp

i + a0 with rate kp
off.

where c is the concentration of monomers in the cytoplasm. An equivalent set of

reactions results for left-facing protofilaments, with a change of sign. If a force is

acting on the ith barbed tip, its polymerization rate becomes konc exp (−Fi/f0) where

we define f0 ≡ kBT/a0 = 0.010 pN to be the polymerization force scale. This is the

Brownian ratchet mechanism described in Sec. 2.1.1. Note that the appearance of

a0 instead of δ in this definition is another consequence of the lack of helical twist

in the polymer. If n protofilaments share a particular load F , then we assume each

protofilament bears an equal share, Fi = F/n. This load-sharing will be elaborated

upon in Sec. 4.3.

The average growth rates of polymer ends are given by

vb
i = a0(k

b
once

−Fi/f0 − kb
off) (3.1)

vp
i = a0(k

p
once

−Fi/f0 − kp
off) (3.2)

The concentration of cytoplasmic monomers also varies as each protofilament

grows or shrinks. The number of cytoplasmic monomers is denoted N . To determine

its relation with the concentration of monomers, we must define the cell geometry. We

assume rod-shaped bacterial cells are spherocylinders (ie cylinders with hemispherical

end caps) of width w = 2Rc and total length l = Lc + 2Rc. Such a cell has volume

V = π
(w

2

)2

l +
4

3
π
(w

2

)3

= πR2
c(Lc +

4

3
Rc). (3.3)

Thus, to convert between molecular abundance N and concentration c in µM, we use

N = NBV c where

NB =
(
10−6micro−1

)
10−24

[
litres

nm3

]
· 6.02× 1023

[
molecules

mole

]
(3.4)

= 6.02× 10−7

[
molecules

nm3 µM

]
. (3.5)

For most of our results, we use a standard geometry of a B. subtilis cell, with Lc =

3 µm and Rc = 400 nm. These numbers were taken from a particular strain that has

been used in several of the MreB studies (see [10] supplemental material), although
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there is considerable variation in cell size even within the same strain. This standard

geometry gives V = 1.9 µm3, and for convenience we define

NC = NBV = 1069 µM−1 (3.6)

so that N = NCc.

3.1.1 Kinetic parameters

As described above, the polymerization dynamics of one protofilament are modeled

by four stochastic processes, each with an independent rate constant,

{kb
on, k

b
off, k

p
on, k

p
off}. (3.7)

These rate constants are known as the kinetic parameters. The same dynamics can

be represented by other combinations of four independent parameters, for example,

the set

{λ, cc, αon, αoff} (3.8)

where λ is the treadmilling rate, Eq. 2.4 (which sets the time scale), cc is the critical

concentration, Eq. 2.3 (which sets the concentration scale) and

αon ≡
kp

on

kb
on

, αoff ≡
kp

off

kb
off

(3.9)

are the on-asymmetry and off-asymmetry, respectively (of the slow-growing pointed

end relative to the fast-growing barbed end). Specifying these four parameters is

equivalent to specifying the kinetic rates, since

kb
on =

λ

cc

(
1 + αoff

αoff − αon

)
(3.10)

kp
on = αon

λ

cc

(
1 + αoff

αoff − αon

)
(3.11)

kb
off = λ

(
1 + αoff

αoff − αon

)
(3.12)

kp
off = αoffλ

(
1 + αoff

αoff − αon

)
(3.13)

The parametrization Eq. 3.8 has many desirable properties, for instance an easier

interpretation in terms of physiological observations. The change-of-parametrization
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formulae Eqs 3.10-3.13 are singular when αon = αoff ⇐⇒ λ = 0. For example, ParM

is another prokaryotic actin that is involved in segregating low-copy plasmids. ParM

polymerizes with symmetric ends, thus αon = αoff = 1. Also, kon = 5.3±1.3 µM−1 s−1

and koff = 64± 20 s−1 [31], so cc ≈ 12 µM and λ = 0.

A key difference between MreB and actin is in their polymerization kinetics. The

four kinetic rates for actin were measured in 1986 [66] directly by electron micrograph,

and are given in Table 3.1.1. Measurement of actin’s critical concentration and free

treadmilling rate have confirmed the self-consistency of Eqs. 2.4 and 2.3.

MreB, however, exhibits different polymerization properties. It has an extremely

high affinity for itself and a tendency to form gels, and all attempts to purify it from

B. subtilis, E. coli or C. crescentus (a crucial first step for an in vitro study such

as the one used to measure actin’s kinetics) have been unsuccessful [15]. Thus it

appears to have a much a lower critical concentration and much higher tendency to

bundle. The only successful purification, and subsequent biochemical study, of MreB

has been from the thermophilic bacteria Thermotoga maritima [24, 25]. Here, the

measured critical concentration was cc = 3 nM, which is cc,actin/cc,MreB = 55 times

smaller than actin.

A recent experiment involving fluorescent-labelled single molecules of MreB in C.

crescentus has lead to a direct measurement of in vivo movement of elements of the

helical structure [44]. The single molecules were reported to move at 6.0 nm/ s. If

this is interpreted as treadmilling along a stationary cable (as the authors do), then

λ = 1.2 s−1, which is nearly twice the value for actin.

The above has led us to two options for estimating the in vivo kinetic parame-

ters of MreB. The first is to simply use the actin kinetics, while the second is to use

Eqs. 3.10 - 3.13, along with the critical concentration from Thermotoga and tread-

milling rate estimated in [44], to generate alternative kinetics. We refer to these ki-

netic parameters as Thermotoga-scaled kinetics, and they represent the least-intrusive

modification of actin polymerization dynamics to make it consistent with all observed

MreB dynamics.

The true kinetic rates of MreB in vivo will certainly differ from either eukaryotic
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Symbol Value Meaning Reference
Eukaryotic actin kinetics
kb

on 12 µM−1 s−1 Barbed-end addition rate constant [66]
kp

on 1.3 µM−1 s−1 Pointed-end addition rate constant [66]
kb

off 1.4 s−1 Barbed-end dissociation rate [66]
kp

off 0.8 s−1 Pointed-end dissociation rate [66]
cc 0.167 µM critical concentration [68] and Eq. 2.4
λtread 0.58 s−1 free treadmilling rate [68] and Eq. 2.3
αon 0.11 pointed-barbed on-assymmetry Eq. 3.9
αoff 0.57 pointed-barbed off-assymmetry Eq. 3.9
Symbol Value Meaning Reference
Thermotoga-scaled kinetics
kb

on 1360 µM−1 s−1 Barbed-end addition rate constant Eq. 3.10
kp

on 150 µM−1 s−1 Pointed-end addition rate constant Eq. 3.11
kb

off 2.9 s−1 Barbed-end dissociation rate Eq. 3.12
kp

off 1.7 s−1 Pointed-end dissociation rate Eq. 3.13
cc 0.003 µM critical concentration [25]
λtread 1.2 s−1 free treadmilling rate [44]
αon 0.11 pointed-barbed on-assymmetry (from actin)
αoff 0.57 pointed-barbed off-assymmetry (from actin)

Table 3.1: List of parameters from eukaryotic actin (top), and parameters scaled to
fit the in vitro critical concentration of Thermotoga from [25], as well as an estimate
of the in vivo treadmilling rate in C. crescentus from [44] (bottom).

actin or our Thermotoga-scaled rates. However, they describe two regimes (the high-

cc actin regime and the low-cc Thermotoga regime) to which MreB likely belongs to

one of. It is uncertain which is more favoured, and we explore both.

The barbed-end polymerization rate generated by our Thermotoga scaling is very

high, kb
on = 1360 µM−1 s−1. Diffusion sets an upper limit on such association rate

constants, defining the diffusion-limited regime. For a spherical protein associating

with a fixed point (like the barbed end of a polymer), the diffusion-limited rate

constant is 2×103 µM−1 s−1 [39]. Our Thermotoga-scaled parameter is slightly below

this limit.
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3.1.2 Bundle ultrastructure

As discussed in Chapter 2, the MreB helix is not an individual polymer, but rather

appears to be a bundle of polymers arranged in a supramolecular array. The ul-

trastructure of the MreB helix – the precise arrangement, orientation and length

distribution of the individual protofilaments that make up the helical bundle – re-

mains a mystery. Several hypotheses have been put forward [25, 28] and Fig. 3.1

illustrates five basic possibilities.

Several of these are less plausible. The slippery arrays in Fig. 3.1E are in dis-

agreement with recent biochemical experiments have demonstrated large lateral in-

teractions between filaments [25, 59]. In fact, it appears that MreB forms bundles

spontaneously. Unlike actin, it does not need additional proteins (such as fimbrin

in yeast, Sec. 2.3.1) for these strong lateral interactions, further supporting strong

bundling.

Fully polarized

No slipping

No slipping

Freely

slipping

Freely

slipping

Anti-parallel

slipping

Unpolarized

A

B

CC

D

E

Figure 3.1: Several possible models for the ultrastructure of an MreB cable.
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Furthermore, our preliminary simulations of the ultrastructure in Fig. 3.1C led to

tapered bundles, as shown in Fig. 3.2. This is a natural consequence of the structure:

all antiparallel protofilaments, which cannot slide past each other, treadmill in oppo-

site directions, causing a thinning out at the edges and ultimately a break near the

middle once all left-facing protofilaments are occupy the left side, and all right-facing

protofilament are on the right. Such tapering is not seen experimentally.
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Figure 3.2: Preliminary results of simulations of the ultrastructure in Fig. 3.1C.
Protofilaments extend from left to right: left-facing protofilaments are shown in red,
while right-facing protofilaments are shown in green. Time progresses towards the
back of the page. Initially, the protofilaments faced random directions, and new
protofilament were nucleated proportionally to the cytoplasmic concentration (al-
though removing nucleation did not affect the result). As can be seen, the protofila-
ments separate into two packets, and eventually split near the middle, as anti-parallel
protofilaments treadmill away from each other. For this reason, this ultrastructure is
rejected.

We therefore consider ultrastructures composed of polarized bundle(s) of protofil-

aments: either one bundle (Fig. 3.1A) or two antiparallel bundles that freely slide
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with respect to each other (Fig. 3.1D). The polymerization properties of these two

arrays are identical (their elastic properties will be defined in Sec. 3.2), therefore our

results apply to either array.

Here we make the assumption that the bundle is described by a bundle thickness,

n, in number of protofilaments. Systematic heterogeneities in the MreB helix thick-

ness have not been observed, and our model does not depend on how the cell regulates

the average number of protofilaments in a cross-section of the filament bundle. We

will make further assumptions about the arrangement of these n protofilaments.

Although we ascribe a thickness n to the bundle, it contains many more than

n protofilaments. As mentioned previously, the protofilaments do not continuously

extend from one end of the bacterial cell to the other. Indeed, in C. crescentus indi-

vidual protofilaments appear to be much shorter than the cell length, only 392± 23

nm on average [44]. The effect of these lateral free ends is to increase timescales, and

to modify transient dynamics. However, in steady-state, exchange of monomers from

these free ends is balanced (i.e. the net exchange is zero), and the distribution of the

individual polymers is irrelevant. For the purposes of finding the steady-state config-

uration, the mechanical and end-polymerization properties of discontinuous bundles

of protofilaments are equivalent to continuous protofilaments. Protofilament associa-

tion, dissociation and nucleation are thus implicitly included in our model.

3.2 Elasticity

In vitro, MreB typically polymerizes into straight filaments [59]. MreB adopts ring-

like coiled configurations in spherical mutants of normally rod-shaped organisms [49],

and forms helices in rod-shaped cells [9]. These observations suggest that we model

the MreB cable as a long, semi-flexible elastic rod. In this section, we define a model

of the elastic properties of the MreB helix.

3.2.1 Cosserat model of an elastic filament

In the elastic Cosserat model [3], a filament is parametrized by its unstretched ar-

clength s ∈ [0, Lfil] where Lfil is its total unstretched length. The Hamiltonian of
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such a filament is

H =
1

2

∫ Lfil

0

[(
Bκ(s)2 + Cτ(s)2

)
n(s)2 + EA(1− |∂s~r|)2 n(s)

]
ds (3.14)

where ~r(s) is the position of the centerline, κ(s) is the local curvature, τ(s) is the local

twist and n(s) is the local filament thickness (measured in number of protofilaments).

B, C and EA are the bending, twisting and stretching modulii of an individual

protofilament, respectively. The symbol ∂s denotes differentiation with respect to s.

This is a variant of the worm-like chain, or Kratky-Porod model [47].

For an actin bundle, the thickness dependence of bending and twisting ranges

from linear (n) for slippery protofilaments to quadratic (n2) for strongly interacting

protofilaments and can exhibit more complex state-dependent bending stiffnesses [38],

depending on the crosslinkers. For MreB, no crosslinkers are necessary for bundling

and lateral interactions appear strong, suggesting a quadratic dependence. Implicit in

this n-scaling is also the assumption that cross-sections of the bundle are close-packed

and compact rather than being (for example) restricted to a plane like a pan-flute.

Following Antman [3], an elastic filament is described by the position of its cen-

terline ~r(s) and an orthonormal basis of directors {~d1(s), ~d2(s), ~d3(s)} specifying the

orientation of its cross-section. This approach has been used extensively for DNA [11]

and the bacterial flagellum [42], but is seldom used for eukaryotic actin (though

see [53]) since actin does not systematically form structures in vivo that are much

smaller than its persistence length. In contrast, MreB forms a helix with a radius

of ≈ 400 nm, which is smaller than the persistence length of a single protofilament

(ξp = B/kBT ≈ 15 µm) and much smaller than ξp for a bundle of several protofila-

ments.

We parametrize the filament by its arclength s ∈ [0, Lfil]. The angular strains in

the filament are then simply

∂s
~di = ~u× ~di, (3.15)

~u = κ1
~d1 + κ2

~d2 + τ ~d3, (3.16)

where κ2 ≡ κ2
1+κ2

2 is the curvature and τ is the local twist. We set ~d3 ≡ ∂s~r, following

the standard shear-free assumption of biopolymers.
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3.2.2 Helical equilibria (and the lack thereof)

Although helical equilibria of elastic filaments have been investigated since the 1800’s,

they remain a challenging, contemporary topic [3,11]. The pioneering work was done

by Kirchhoff [45] and Love [56]. In this section we will demonstrate two results; first,

that torque is a necessary condition for the helical equilibrium of a filament, and

second, that the helix is not the lowest-energy configuration of a filament constrained

to lie inside a cylinder.

The helix is assumed to extend throughout the cylindrical part of the cell, but not

into the hemispherical poles, in agreement with experiment [41].

The centerline of a helix with pitch angle θ (measured from the cell’s axis, ẑ) and

radius Rc is

~r(s) = Rccos

(
sin θ

Rc

s

)
x̂ + Rcsin

(
sin θ

Rc

s

)
ŷ + cos θs ẑ. (3.17)

A helix is shown in Fig. 3.3.

2Rc

φ̂

θ

Lc

p

ẑ

x̂

ŷ

Figure 3.3: A helix. The axis of symmetry lies on the z-axis. The pitch angle
θ (measured from the z-axis) is related to the pitch p through Eq. 3.46: longer
pitches have smaller θ. The azimuthal direction is denoted φ̂ (Eq. 5.2). The cylinder
containing the helix has length Lc and radius Rc. The origin shown has been shifted
away from the center of the cylinder for clarity.
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We use the tangent, normal and binormal unit vectors, which are defined as

~t(s) ≡ ∂s~r(s), (3.18)

~n(s) ≡ ∂s
~t(s)/|∂s

~t(s)|, (3.19)

~b(s) ≡ ~t(s)× ~n(s), (3.20)

and the Frenet-Serret Theorem [3], which states that

∂s
~t(s) = κ~n(s), (3.21)

∂s~n(s) = −κ~t(s) + τc
~b(s), (3.22)

∂s
~b(s) = −τc~n(s), (3.23)

where τc is the torsion of the filament’s centerline. Inserting Eq. 3.17 into Eqs. 3.18–

3.23, we obtain

κ =
sin2θ

Rc

(3.24)

and

τc =
1

Rc

cos θsin θ. (3.25)

The meaning of τc is as follows. The directors {~d1(s), ~d2(s)} are, in general, a rotation

of {~n(s),~b(s)} through an angle β(s). The difference between the physically relevant

total twist τ and the centerline torsion τc is τL ≡ τ − τc = ∂sβ. This is sometimes

called the internal twist, or the twist of Love [88], which Love described as the twist

which the rod would have “if simply unbent”. In situations where the ends are free

to rotate in the ~d3 direction (although they may be constrained from translation

and/or clamped so as not to rotate in the azimuthal direction), the internal twist τL

will rotate to eliminate τ(s), resulting in no net twist. In this sense, in mechanical

equilibrium, twisting de-couples from bending and stretching [56].

Now suppose that an end force and end torque (also known as a moment) F and M

act on the ends of the helix, in line with its z-axis. The total length change of the helix

is Lfil−Lc = Lfil(1− cos θ). The total twist, from Eq. 3.25, is τ = τL +sin θcos θ/Rc.

Thus, we can define potential energies corresponding to the external force and torque,

VF = FLfil(1− cos θ), (3.26)

VM = MLfil

(
τL +

1

Rc

sin θcos θ

)
. (3.27)
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The total potential energy of the helix, with end loading, is H + VF + VM ≡ vLfil,

where v is the energy density. The conditions for equilibrium are

∂v

∂θ
=

∂v

∂Rc

=
∂v

∂τL

= 0. (3.28)

Combining the Hamiltonian, Eq. 3.14 with Eq. 3.26, 3.27 and 3.28 gives

F =
B

Rc

sin 2θ (3.29)

M =
√

BT (1 + cos θ) (3.30)

These equations were derived by Love [56], and represent necessary and sufficient

conditions for a helical configuration to be an equilibrium configuration. As can be

seen directly from Eq. 3.30, a nonzero torque is required for any helical equilibrium

to exist other than the trivial one, with θ = −π.

For a filament not subject to end tension or torque but simply constrained to lie

inside a cylinder, it is straightforward to show that the helix is not the natural con-

figuration. There are a multitude of configurations with lower total elastic energies,

meaning the helix is not the ground state. We solve three cases exactly, illustrated

in Fig. 3.4.

Energy of a helix

A helix (Fig. 3.4A) with pitch angle given by cos θ = Lc/Lfil has constant curvature,

and the total bending energy is

Eh =
BLfil

2R2
c

(
1−

(
Lc

Lfil

)2
)2

. (3.31)

Since E =
∫

(B/2)κ2ds, it is convenient to define the total square curvature,

C ≡
∫ Lfil

0

κ2dl. (3.32)

For Lc = 3 µm, Rc = 400 nm, and Lfil = 10 µm, this equation gives κ = 1.82 µm−1

and Ch = 33.1 µm−1. For Bn2 = 104 pN nm2 · 52, the energy is Eh = 7100 pN nm.
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A

B

C

Figure 3.4: Three configurations of an elastic filament inside a cylindrical cell. A)
Helix. The angle indicated by the arc is the pitch angle, θ. B) If the filament is allowed
to enter the hemispherical end caps, it can make a paperclip-like configuration. C)
The maximal ellipse obtained by slicing the cylinder along its diagonal. The angle
indicated by the arc is cos −1

√
β.

Energy of a paperclip

If the filament is allowed to extend into the hemispherical cell poles, it can adopt the

periodic paperclip-like configuration shown in Fig. 3.4B. One repeat of this configu-

ration has length Lfil1 = 2Lc + 2πRc and total square curvature

Cp1 =
2π

Rc

. (3.33)

For Lc = 3 µm, Rc = 400 nm, we get Lfil1 = 9.14 µm, the curvature in the poles is

κ = 2 µm−1, and Cp1 = 12.5 µm−1. A filament of length Lfil = 10 µm whose starting

point is randomly placed along this configuration will have total square curvature

Cp =
Lfil

Lfil1

Cp1 =
Lfil

2Lc + 2πRc

2π

Rc

. (3.34)
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For Lfil = 10 µm, Cp = 13.7 µm−1. For Bn2 = 104 pN nm2 · 52, the energy is

Ep = 2925 pN nm.

Energy of an ellipse

The maximal ellipse obtained by slicing the cylindrical part of the cell, as shown

in Fig. 3.4C, has semimajor axis a =
√

R2
c + (Lc/2)2, semiminor axis b = Rc and

eccentricity

e =
√

1− b2/a2 =
Lc√

4R2
c + L2

c

. (3.35)

Expressing the curvature in polar coordinates is undesirably messy, so we instead

parametrize the curve by

x(t) = a cos t, (3.36)

y(t) = b sin t, (3.37)

where t ∈ [0, 2π]. Note that t is not the polar angle θ, but rather is related to it by

tan θ = (b/a)tan t. The distance from the origin is

r(t) =
√

a2cos 2t + b2sin 2t (3.38)

and the curvature is (using the Frenet-Seret theorem, Eq. 3.21)

κ(t) =
ab

b2cos 2t + a2sin 2t
, (3.39)

which has a maximum of κmax = a/b2 and minimum of κmin = b/a2 at the two

vertices, respectively. The perimeter of the ellipse is Lfil1 = 4aE(e) where E(x) is

the complete elliptic integral of the second kind.

The total square curvature of one wavelength is

Ce1 = 4

∫ π/2

0

κ(θ)2r(θ)dθ = 4

∫ π/2

0

κ(t)2r(t)

(
dθ

dt

)
dt. (3.40)

Now define β = b/a =
√

1− e2. The above expression becomes

Ce1 = 4
β3

a

∫ π/2

0

(cos 2t + β2sin 2t)
1/2

(β2cos 2t + sin 2t)3

1 + tan 2t

1 + βtan 2t
dt. (3.41)
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This integral has no closed form solution. For Lc = 3 µm, Rc = 400 nm, we get

Lfil1 = 7.0 µm and Ce1 = 16.4 µm−1. For Lfil = 10 µm, Ce = 23.4 µm−1, and for

Bn2 = 104 pN nm2 · 52, the energy is Ee = 5000 pN nm.

Both the paperclip configuration and the elliptic configuration have less energy

than the helical configuration by at least 40%. The conclusion of this section and the

previous is that an elastic filament inside a cylindrical cell will not buckle into a helix

in the absence of external torques. This conclusion will be verified numerically using

finite element analysis in Chapter 5. There must be some external forces acting on

the MreB cables other than forces normal to the cell wall (which contribute no axial

torque) in order for otherwise straight cables to buckle into a helix.

3.2.3 Variational estimate of effective force

By imposing the observed helical configuration we can use variational techniques to

estimate the effective forces working against monomer addition at the filament tips.

Although we do not know the nature of the external forces acting to maintain a helical

configuration, this derivation is independent of their details.

Using the linearly elastic Hamiltonian from Eq. 3.14, plugging in Eq. 3.17 and

Lc = Lfil cos θ , we find the variations of the Hamiltonian with respect to cell length

Lc, cell radius Rc and filament length Lfil,

∂H
∂Lc

= −2B

R2
c

sin2θcos θ〈n2〉, (3.42)

∂H
∂Rc

= −BLfil

R3
c

sin4θ〈n2〉, (3.43)

∂H
∂Lfil

= − B

2R2
c

sin2θ (1 + 3 cos2θ)〈n2〉. (3.44)

Regardless of any mechanisms holding the MreB bundle in a helical configuration,

one additional monomer must provide an energy of (−a0∂H/∂Lfil) to polymerize

itself to the tip of the longest protofilament(s). This provides an estimate for the

force acting upon the tip of the filament bundle,

FB =

fB sin2θ (1 + 3 cos2θ)〈n2〉 Lfil > Lc

0 Lfil < Lc,
(3.45)
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where we define fB ≡ B/2R2
c ≈ 0.031pN to be the elastic force scale. Many of our

results reflect the fact that we work in an interesting regime where elastic forces, FB,

and the polymerization force scale, f0 ≡ kBT/a0 = 0.80 pN, are similar in magnitude.

The pitch p and pitch angle θ of the helix are related by

p =
2πRc

tan θ
, cos θ =

Lc

Lfil

. (3.46)

The bundle thickness n(s) need not be spatially homogeneous. If it exhibits significant

inhomogeneity along the bundle, by analogy with actin cables in yeast [43], then the

appropriate average thickness n is the root-mean-square average thickness along the

bundle length. Other than the buckling point at Lfil = Lc, FB is independent of Lfil

for a given θ. As the pitch p vanishes, with θ → π/2, then FB → fBn2. The force FB

has a maximum of Fmax
B ≡ 4

3
fBn2 at θ∗ = arctan

√
2 ≈ 0.96 ≈ 55◦.

The other variations

Insight into the MreB helix can be extracted from the other variations as well. We

describe them here as an aside.

Eq. 3.42 provides an estimate for the force generated by the MreB cytoskeleton

against the cell’s end caps. An estimate for the difference in longitudinal spring

constant of the cell with and without a properly formed MreB helix is,

∆kcell ≈
∂2H
∂L2

c

=
2B

LcR2
c

cos θ(3cos θ − 1)n2. (3.47)

For p = 1 µm and n = 15, this yields 4×10−4 pN/ nm. For E. coli, the spring constant

of the entire cell is ≈ 103 pN/ nm [93] and is much larger for B. subtilis, thus the spring

constant differential provided by the MreB helix is insignificant. Similarly, Eq. 3.43

provides an estimate for the radial line pressure the helix exerts on the lateral walls:

Fr̂

Lfil

≈ B

R3
c

sin4θn2. (3.48)

For p = 1 µm and n = 15, this yields 0.03 pN/ nm. Eq. 3.48 represents a force contrast

between pushing the cell wall directly above the helix and elsewhere. A bundle with

n = 15 has approximate thickness a0

√
n ≈ 20 nm and the local excess pressure over

the cables is ≈ 5 × 10−3 pN/ nm2. In comparison, turgor pressure inside E. coli has
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been measured at ≈ 0.1 pN/ nm2 [93], indicating that the rigidity of the MreB bundles

does not directly provide significant structural support for the cell well.

3.2.4 Energy scales and approximations

The stretching modulus of a filament bundle of actin is nEA ≈ 40n pN where n is

the number of protofilaments in a typical cross-section of the bundle. For a typical

filament with n = 15, the energy scale to stretch the filament by monomer addition is

∆Ustretch = EA na0 ≈ 2× 103 pN nm, whereas a comparable energy scale for bending

the helix is ∆Ubend = Ba0/4R
2
cn

2 ≈ 70 pN nm. Therefore the no-stretch assumption

is appropriate in this case.

At physiological temperatures, all cellular components undergo thermal fluctua-

tions of the order kBT . However, a typical helical bundle with n = 5 and p = 1 µm

has an elastic energy of U = 3.5 × 105 pN nm � kBT = 4.1 pN nm. We therefore

assume that the helical pitch does not significantly fluctuate due to thermal effects.

This is a consequence of the fact, stated earlier, that the structures MreB forms have

length scales much smaller than the persistence length of the cables.

3.2.5 Euler buckling

It is intersting to consider the behavior of the filament as it approaches the length

of the cell and first encounters a compressive force upon its tips, as hypothesised

in Eq. 3.45. The filament’s equilibrium configuration, that is, straight, is only stable

below a certain force. Above this limit, the filament will buckle under the compressive

force and adopt a non-straight configuration. This phenomenon is known as Euler

buckling [3, 52].

The critical force can be found using the so-called beam equation, which is a

consequence of the Hamiltonian in Eq. 3.14, along with the assumption that the

deformations are small enough that rz(s) ≈ s. The beam equation is used extensively

in mechanical engineering. It is a fourth-order differential equation that states

B
∂4rx

∂z4
+ F

∂2rx

∂z2
= 0, (3.49)

B
∂4ry

∂z4
+ F

∂2ry

∂z2
= 0. (3.50)
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The trivial solution, rx(s) = ry(s) = 0, always exists. To find non-trivial solutions, we

note that both rxz = sin (knz) and rxz = cos (knz) satisfy Eq. 3.49 with k =
√

F/B

and n ∈ {0, 1, 2, ...}. The condition that the ends are fixed is rx(0) = rx(Lfil) =

0. Further constraining the ends imposes further boundary conditions, for instance

clamping them such that ∂3rx(0)/∂z3 = ∂3rx(Lfil)/∂z3 = 0. However, the basic

condition leads to

sin (kLfil) = 0 =⇒ FE = π2 B

L2
fil

. (3.51)

where FE is the critical force for Euler buckling. Thus, there is a regime in which the

filament can be exposed to a non-zero force F < FE and may still remain straight.

This tip force is comparable to our proposed tip force in Eq. 3.45 when

π2 B

L2
fil

≥ B

2R2
c

sin2θ (1 + 3 cos2θ). (3.52)

For the standard cell geometry Lc = 3 µm, Rc = 400 nm, this occurs at θ = 18◦ =⇒
p = 8 µm, a pitch much larger than is biologically relevant. For larger θ we are far

above FE and do not expect any metastable unbuckled configurations.

3.3 Other possible sources of pitch

The shooting helix

One of the simplest explanations of the abundance of helices in bacteria is that if a

polymer is membrane-bound and simply starts growing in some direction, without

any bending resistance, then it will form a helix, a ring or an axial line (which are

degenerate helices). We explore the consequences of this model here.

Suppose a polymer nucleus were oriented randomly at one end of the cell so that

its polymerization axis made an angle θ with the cell’s axis. For now, suppose θ is

uniformly distributed in the first quadrant. That is,

θ ∼ fθ(θ) =

2/π 0 ≤ θ ≤ π/2

0 otherwise
(3.53)

If this nucleus grows into a polymer without rotating, extending into a helix that

runs the length of the cell, the pitch of this helix will be given by Eq. 3.46,

p =
2πRc

tan θ
. (3.54)
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That is, p = h(θ) where for clarity we define

h(x) =
2πRc

tan x
(3.55)

The tan function is monotonic increasing in [0, π/2] thus h is monotonic decreasing.

To find the distribution of p ∼ gp(p), we use the transformation equation [72],

gp(p) = fθ(h
−1(p))

∣∣∣∣dh−1

dp
(p)

∣∣∣∣ . (3.56)

and obtain

p ∼ gp(p) =

4Rc/
(
p2 + (2πRc)

2) 0 ≤ p ≤ ∞

0 otherwise
(3.57)

This function is illustrated by the red curve in Figure 3.5. Note that∫ ∞

0

gp(p)dp =

∫ ∞

0

4Rc

p2 + (2πRc)
2dp = 1 (3.58)

and

〈p〉 =

∫ ∞

0

pgp(p)dp =

∫ ∞

0

4Rcp

p2 + (2πR)2dp →∞,

〈p2〉 =

∫ ∞

0

p2gp(p)dp =

∫ ∞

0

4Rcp
2

p2 + (2πRc)
2dp →∞.

The distribution is well-defined but has no mean or variance. The mode (maximum)

is at p = 0. The cumulative distribution function of p is

Gp(p) =

∫ p

0

gp(q)dq =
2

π
arctan

(
p

2πRc

)
. (3.59)

Solving for Gp(p) = 0.50 gives the median, at p = 2πRc (i.e. when θ = π/4). Note

that if the range of θ is increased to [−π/2, π/2] and the pitch is taken to be strictly

positive, the function h becomes even and the results are identical. It is probably not

relevant that the distribution of pitches has no mean, however it does demonstrate

that the distribution is extremely wide and has an extremely long tail — that is, many

helices established in this way have large pitches. A bacteria using such a mechanism

to establish helices would have a very difficult time controlling their pitches, and in

particular, avoiding nearly-straight configurations.
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Figure 3.5: The shooting model for the establishment of a helical pattern in a cell.
(Left) Uniformly distributed pitch angle θ ∈ [−π/2, π/2]. (N = 105). (Right) The
resulting distribution of pitches. The histogram represents data from simulation,
N = 105, while the curve shows analytic prediction from Eq. 3.57. The function is
non-zero for all positive p and the plot was cut at p = 10R for clarity.

3.4 Conclusions

In this chapter we presented a model of the MreB helix inside a cylindrical cell. First,

individual protofilaments were considered on a molecular scale using a simple poly-

merization model, where changes occur in nanometers (the size of an MreB monomer).

Then, the ultrastructure of the cables was considered, where the cross section may

be tens of monomers wide. Finally, the cable’s elastic properties within the cell was

considered, in which it forms structures several microns long. Three significant differ-

ences between MreB and actin were highlighted: the lack of a double-helix polymer,

which leads to a slight change in polymerization dynamic equations; the distinct and

unknown kinetic rates; and the lateral bundling interactions of the protofilaments.

In the following chapters, we will explore the consequences of this model. However

we have already stated several novel conclusions. First, the bundle’s ultrastructure

cannot be such that all protofilaments are laterally attached so as not to slip, and

also such that their orientations are random, since this would lead to tapering and

breaking. Second, the helix is not the default configuration for an elastic filament

inside a cylindrical cell. Third, the mechanical properties of the MreB structure are



35

negligible compared to the cell’s other mechanical elements, such as the peptidogly-

can stiffness and the turgor pressure. And fourth, filaments generated by randomly

oriented nuclei indeed form helices, but often with very large pitches.



Chapter 4

Results: Polymerization consequences

The model described in the previous chapter leads to the following interpretation

of the establishment of the MreB helix. A cell contains an abundance of N = N0

molecules of MreB. A bundle of protofilaments, n thick, is formed somewhere inside

the cell, and it begins to grow, reducing the number of cytoplasmic monomers, N ,

and consequently the concentration, c. As the bundle length, Lfil, grows longer than

the cell length, Lc, it is forced to buckle into a helical configuration, at which point

forces on its ends reduce the polymerization rate. These forces increase as the bundle

gets longer and longer, meanwhile the concentration of free monomers decreases. The

bundle continues to grow until the elastic forces are balanced by the polymerization

forces, and the helix reaches a steady state.

In this steady state, the helical configuration of the bundle is static, however the

individual monomers are not. Subunits incorporated into the bundle continue to

treadmill from the barbed end pole towards the pointed end pole, and then depoly-

merize into the cytoplasm where they await reincorporation.

The helical configuration and the effective tip force in Eq. 3.45 assume the helix is

in mechanical equilibrium, which may not be true if the dynamics of polymerization

are fast enough to continually hold the helix in (mechanical) non-equilibrium. How-

ever, this is not the case: an estimate for the timescale for elastic reorganization of the

MreB helix can also be obtained from the relaxation time of the lowest hydrodynamic

mode in the filament [39],

telastic ∼
26

(3π)4 ln(2)

ηL4
fil

B
≈ 0.02 s, (4.1)

where η is the cytoplasmic viscosity. In comparison, the characteristic time for poly-

mer elongation is given by the steady-state treadmilling rate,

tpoly ∼
1

λtread

=
kp

on + kb
on

kp
offk

b
on − kb

offk
p
on
≈ 1.7 s. (4.2)

36



37

Since telastic � tpoly we can assume that elastic relaxation is fast compared to the

polymerization dynamics of interest.

The main result of this chapter is a solution for this steady state, and in particular,

a relationship between the four system variables that describe it: total molecular

abundance, N0, the bundle thickness n, the cytoplasmic concentration of monomers,

c and the helical pitch, p. We establish this relationship under several assumptions,

along with other details of the steady state.

4.1 Mean-field results

By neglecting stochastic fluctuations, we can solve analytically for the relationship

between pitch, total monomer number and cytoplasmic concentration. By equat-

ing the average velocities of barbed polymerization and pointed depolymerization in

Eqs. 3.1 and 3.2, we find the force at which an the filament will cease to grow and

begin treadmilling,

F = f0 ln

(
c

cc

)
. (4.3)

In mechanical equilibrium, this force must be balanced with the effective force in

Eq. 3.45. If ntip ∈ [1, n] protofilaments reach each tip, then the force is shared

between them, and

FB = f0 ln

(
c

cc

)
ntip = fB sin2θ (1 + 3cos2θ)〈n2〉. (4.4)

We also have conservation of total number of monomers. The length of the filament

is Lfil = Lc/cos (θ), and is thus composed of 〈n〉Lc/(a0cos (θ)) monomers. The total

number of monomers is this plus the number in the cytoplasm, so

N0 = NCc + 〈n〉Lc

a0

1

cosθ
, (4.5)

where N0 is the total number of monomers, NC is the number of molecules per µM

for a given cell volume, defined in Eq. 3.6, and 〈n〉 is averaged along the length of the

helix. Together these equations give a relationship between concentration and pitch

angle,

ln

(
c

cc

)
ntip =

fB

f0

sin2θ (1 + 3cos2θ)×
(

(N0 −NCc)2 a0

Lc

2

cos2θ

)
, (4.6)
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and an equivalent relationship between bulk thickness and pitch angle,

ln

(
N0

NCcc

− 〈n〉 Lc

a0NCcc

1

cos θ

)
ntip =

fB

f0

sin2θ (1 + 3cos2θ)〈n2〉. (4.7)

These equations are independent of the kinetic rates except through the critical

concentration.

4.1.1 Eukaryotic actin kinetics

Eqs. 4.6 and 4.7 have no closed-form solution. However, they can be solved numer-

ically provided N0 − nLfil/a0 > NCcc, that there are enough monomers left in the

cytoplasm to achieve the critical concentration, and N0/n > Lc/a0, that there are

enough subunits to span the cell length n times. We do this for the two cases ntip = 1

and ntip = n, shown in Figs. 4.1-4.2. As expected, the assumption ntip = 1 produces

much larger pitches and higher cytoplasmic concentrations. For bundle thicknesses

n > 5, the pitches are too long to be physiologically relevant. Both these results can

be compared with results from stochastic simulation we will find in Sec. 4.2.

4.1.2 Thermotoga-scaled kinetics: Explicit results for low-cc

For the Thermotoga-scaled kinetics from Tables 3.1.1, the only relevant change is in

the critical concentration. However, we are now in a regime where

cc �
N0

NC

e−fB/f0 (4.8)

and we can obtain approximate explicit solutions for Eq. 4.6. The concentration

scale is low, so c � N0/NA. Thus, the c term in Eq. 4.5 can be neglected and Eq. 4.7

can be solved for θ, and in turn for the pitch (Eq. 3.46) and then c. The pitch and

concentration are then given by

p(N0, n) =
2πRc√(
Lcn
N0a0

)2

− 1

, (4.9)

and

c(N0, n) = cc exp

[
fB

f0

(
1−

(
Lcn

N0a0

)2
)(

1 + 3

(
Lcn

N0a0

)2
)

n2

ntip

]
. (4.10)
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Figure 4.1: Steady-state configuration parameters in the mean-field approximation
with actin kinetics, assuming that all protofilaments contributes to the polymerization
force, ntip = n. These curves were found by numerically solving Eq. 4.6.

The interpretation of these solutions is straightforward. Eq. 4.9 states that effectively

all monomers join the bundle. Its length is simply Lfil = a0N0/n, and its pitch follows

from the geometry. Eq. 4.10 states that the concentration will adjust to whatever

is needed to provide the force required by Eq. 4.9. Its non-monotonic character is

inherited from the non-monotonic character of the force equation, Eq. 3.45.
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Figure 4.2: Steady-state configuration parameters in the mean-field approximation
with actin kinetics, assuming that one protofilament contributes to the polymerization
force, ntip = 1. These curves were found by numerically solving Eq. 4.6. The resulting
pitches and concentrations are much higher than in Fig. 4.1, where ntip = n.

These functions are shown in Fig. 4.3. The explicit results from Eqs. 4.9 and 4.10

are identical to curves obtained from finding numerical solutions to Eq. 4.6. These

results will further be compared with full stochastic simulations in the next section.
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Figure 4.3: Steady-state configuration parameters in the mean-field approximation
with Thermotoga-scaled kinetics, assuming that all protofilaments contributes to the
polymerization force, ntip = n. The explicit results from Eqs. 4.9 and 4.10 are indis-
tinguishable from curves obtained from finding numerical solutions to Eq. 4.6. Note
the scale is now in nM= 10−3 µM.

4.2 Stochastic simulation

In a typical B. subtilis cell of volume 1.9 µm3, only 4 unpolymerized monomers are

necessary to achieve the critical concentration of Thermotoga MreB, cc = 0.003 µM,
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suggesting that stochastic effects, due to the discrete molecular nature of the poly-

merizing monomers, may be significant. Similarly, the number of protofilaments in

a typical cross-section of the MreB helix is small (less than 20), and the number of

protofilaments in contact with the cell wall at the helix tips, ntip, is even smaller. For

these reasons, a fully stochastic simulations may be needed to explore the impact of

stochastic effects in this system, especially in the low-cc regime.

We simulated n protofilaments that grew and shrank stochastically within a com-

mon pool of N0 monomers according to the force-dependent polymerization rates and

force-independent depolymerization rates described in Sec. 3.1. The times between

polymerization or depolymerization events were chosen from appropriate exponential

distributions. This is sometimes called the Gillespie algorithm [34]. The forces on each

protofilament tip were determined by the constraint force on the bundle, Eq. 3.45,

divided among the leading filaments at that tip (1 ≤ ntip ≤ n). The filament bundle

was studied once it reached a steady-state. The length of each of the n filaments and

the monomer concentration continued to fluctuate within the steady-state, as did the

number of protofilament tips, ntip, at a given end of the filament bundle.

For a given cell geometry (Lc and Rc) and total number of monomers (N0), each

bulk thickness n yields a unique helical steady-state configuration with a particular

pitch p and average cytoplasmic monomer concentration css. As seen in Fig. 4.4,

as the abundance N0 increases for a given number of protofilaments n, the pitch

decreases due to longer bundles. Conversely, at a given N0, thicker bundles (larger

n) leads to larger pitches.

The gray rectangles in Fig. 4.4 represent independent experimental measurements

of MreB abundance and cable pitch in B. subtilis [10,41] and E. coli [50]. In B. subtilis,

if the three MreB isoforms (MreB, Mbl, and MreBH) bundle together into a triplex

structure, the total number of monomers should be the sum from each homologue,

which we estimate is 23000−40000. We see that with current experimental estimates,

E. coli has n ∈ [3, 16] protofilaments in each polarized MreB helical bundle. Expressed

independently in B. subtilis we estimate that Mbl has n ∈ [9, 21], while MreB has

n ∈ [3, 7]. However, if all of the isoforms are expressed together, the triplex structure
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Figure 4.4: Steady-state pitch p vs. total molecule number N0 for various filament
bulk thicknesses n as predicted by stochastic simulation. The mean-field plot is
indistinguishable from this due to the low cytoplasmic concentration, and between
actin kinetics and Thermotoga-scaled kinetics. The rectangles represent approximate
regions of experimental relevance from [10,41,50]. In B. subtilis, if the three isoforms
bundle together into a triplex structure, the number of monomers will be the sum of
each homologue.

has a distinct pitch. Under the assumption that the isoforms are mutually non-

slipping, we estimate n ∈ [8, 21] in the triplex.

The concentration of MreB in monomeric form shown in Fig. 4.5 is low, represent-

ing less than 0.1% of the total cellular MreB. This is in contrast to the same model

using eukaryotic actin kinetics, for which 1− 5% is monomeric (Fig. 4.6), and in dra-

matic contrast with observations of FtsZ polymerization, for which 30% is associated

with the Z-ring and 70% is diffuse in the cytoplasm in vivo [81]. Notwithstanding,

the average monomeric concentration of MreB is significantly above the critical con-

centration due to a reduced polymerization rate which arises from the constraining

force at the bundle tips.

The shape of the curves in Fig. 4.5 can be understood by examining the explicit
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Figure 4.5: Steady-state cytoplasmic concentration css of MreB monomers vs. total
monomer number N0 from stochastic simulation for n protofilaments, showing n = 1,
5, 10, 15, 20, and 25. The dotted line represents the critical concentration. The dashed
line illustrates the large standard deviation of stochastic fluctuations in steady-state,
for n = 5. For all n, relative fluctuations were 50%±5% and absolute fluctuations were
within 0.2nM of those shown for n = 5. These simulations used Thermotoga-scaled
kinetics.

results from the mean-field approximation in Eq. 4.10. As stated previously, the non-

monotonicity follows from the force vs. pitch relationship in Eq. 3.45, which grows

quickly, reaches a maximum then decreases again as the pitch angle approaches π/2.

As a result for each n the cytoplasmic concentration exhibits a similar maximum vs.

N0 as force does vs. pitch. This maximum is at larger N0 for larger n, corresponding

to a constant θ∗. We also see in Fig. 4.5 that the fluctuations in the monomeric

concentration are very large and approximately independent of n and N0 — the

system is often below the critical concentration despite the upward bias due to the

constraint forces. This has implications for force generation, which we discuss in

Sec. 4.3.

If the force experienced by the bundle tip does not vary strongly, i.e. if, dF/dx �
kBT/a2

0, then constraining a filament at both ends does not alter the treadmilling
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Figure 4.6: Steady-state cytoplasmic concentration css of MreB monomers vs. total
monomer number N0 from stochastic simulation for n protofilaments, showing n = 1,
5, 10, 15, 20, and 25, using eukaryotic actin kinetics. The dotted line represents the
critical concentration. The red dashed line illustrates the large standard deviation of
stochastic fluctuations in steady-state, for n = 5. These fluctuations are ≈ 0.02 µM,
or roughly 12%, much lower than for Thermotoga-scaled kinetics (Fig. 4.5).

rate given in Eq. 2.4, since all on-rates are scaled proportionally, leaving their ratio

unchanged. In the other limit, in which a filament is stuck in an infinite square well

and forces are zero if the filament is blow a certain length and infinite above it, the

treadmilling rate is also unchanged. We derive this surprising results in Appendix A.

It is thus not surprising that in the much more complicated situation of a treadmilling

bundle, λtread remains identical.

4.3 Force generation by a stochastic polymer bundle

There is a large disagreement between the steady-state configuration predicted by

mean-field approximations and what is found through stochastic simulation, evident

in the cytoplasmic concentration in Fig. 4.5 contrasted with Fig. 4.3. In the mean-field

approximation, the force obeyed the simple form of Eq. 4.3,

F = f0 ln

(
c

cc

)
ntip. (4.11)
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In our simulation, the emergent force generation is complicated by stochastic effects.

We explain this in terms of two competing phenomena; the fluctuations in the struc-

ture of the tip, which augments force generation at a given cytoplasmic concentration,

and the fluctuations in the concentration of cytoplasmic monomers themselves, which

reduces the force generation.

4.3.1 Tip fluctuation effects

In the absence of forces, every protofilament of a bundle treadmills with equivalent

rates and critical concentrations. However, force generation by a bundle in which the

load is applied only on the most advanced ntip protofilaments behaves differently. In

the mean-field approximation we were forced to assume a particular value for ntip,

while in the full simulation, the number fluctuated significantly. For instance, for

n = 20, N0 = 20000, the full distribution of ntip is shown in Fig. 4.7. Nearly 70%

of the time, only one protofilament reaches the end of the bundle, and thus only one

protofilament is pushing against the cell wall. However, the force generation is very

different from the mean-field result in which we assumed ntip ≡ 1.

In fact, when ntip is allowed to fluctuate, lagging filament tips grow without force

retardation and with a reduced cc, thereby catching up to the tip more often than

otherwise — increasing ntip and reducing the load per loaded filament. This leads to

a larger total load for the bundle for the same monomer concentration css. A similar

effective increase in force generation due to stochastic fluctuations has been noted in

passing [62], although not analyzed in detail.

In this section we explicitly work out the details for n = 2. For n > 2, the effects

of force generation by a stochastic ntip are expected to be more significant, as is seen

in Fig. 4.9.

Stochastic tip: n = 2 case

We parametrize the system of two filaments by i ∈ {0, 1, ...}, the number of monomer

spacings between the two tips. For any i, two competing Poisson events could increase

the spacing: addition at the leading tip and dissociation at the lagging tip. Reduction

of i occurs by the complementary two events. The fact that there are two physical
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Figure 4.7: Probability distribution of number of protofilaments that reach the end
of the bundle, ntip. The data was taken from the final 106 s of a stochastic simulation
with n = 20 and N0 = 20000. As shown in the graph, nearly 70% of the time there
is only one protofilament reaching the tip. The distribution has mean 〈ntip〉 = 1.38
and standard deviation 0.62.

configurations corresponding to any particular value of i, except for i = 0, is irrelevant.

This is a Markov process whose transition diagram is depicted in Fig. 4.8.

The master equations lead to the following equations for stationary probabilities

pi:

i ≥ 2 : pi−1(koff + koncε) + pi+1(konc + koff) = pi(koff + koncε + konc + koff),

i = 1 : 2p0(koff + konc
√

ε) + p2(konc + koff) = p1(2koff + konc(1 + ε)),

i = 0 : 2p0(koff + konc
√

ε) = p1(konc + koff).

The factors of
√

ε arise when i = 0 and there are two leading tips sharing the load,

halving the force per filament. These equations lead to recurrence relations for pi.

Although i cannot exceed the length of the filament, the pi vanish exponentially as i

increases so we approximate imax = ∞. Imposing normalization,
∑

pi = 1, we find

pb
0 =

c(1− ε)

c(1 + 2
√

ε− ε) + 2cb
, (4.12)
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Figure 4.8: Transition diagram for a stochastic polymer tip with n = 2 protofilaments
as it interacts with a load force, F , represented by the rectangle. The parameter i
represents the number of subunit spacings between the leading filament tip (which is
always in contact with the load) and the other tip. The force is mediated through a
Boltzmann factor, ε ≡ exp (−F/f0).

where cb ≡ kb
off/k

b
on, and we have specified the barbed end. An equivalent expression

for pp
0 applies for the pointed end. The average polymerization velocity for these

stationary probabilities is

λb = (2kb
onc
√

ε) p0 + (kb
oncε− kb

off)(1− p0) (4.13)

= (kb
oncε− kb

off) + (kb
onc(2

√
ε− ε) + kb

off) p0,

and is a nontrivial function of both c and F (through ε). To solve for the treadmilling

concentration at a given force, we insert the barbed and pointed equivalent versions

of Eq. 4.13 into λp = −λb, which is a cubic polynomial in c, and we extract the one

real, stable root.

The relation between the total applied force, FB, and the cytoplasmic monomer

concentration css is shown by the solid line in Fig. 4.9. Note that this derivation (and

the simulations in Fig. 4.9) imposes a static c, though ntip fluctuates. The disagree-

ment with the mean-field result (dashed line), indicates that the ntip fluctuations are
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important for the total force.
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Figure 4.9: The effect of tip fluctuations on force generation by a polymer bundle.
Maximal steady-state force generation F by a filament bundle with a stochastic ntip

is shown as a function of average concentration css. We hold css fixed and allow an
arbitrary bundle stiffness. The solid line represents the analytic prediction for n = 2
with a stochastic ntip. The points indicate stochastic simulations, only allowing ntip

to vary. Fluctuations in ntip allow a significantly increased force compared to the
mean-field results. Various average bundle thicknesses n are shown. The dashed
lines represent the mean-field predicted force-concentration relation (Eqs. 4.3, 4.11)
if ntip = n independent tips were all sharing the load.

4.3.2 Cytoplasmic fluctuation effects

The second phenomenon responsible for the disagreement between the mean-field pre-

diction and stochastic simulation is the nature of the cytoplasmic monomers. First,

they are discrete; in a typical cell with Rc = 400 nm and Lc = 3 µm, one monomer

gives a concentration of 1/NC = 0.87 nM, so only integer multiples of this concen-

tration are ever achieved, c ∈ {0.87, 1.74, 2.61, ...} nM. The second is their large

fluctuations, as mentioned previously and shown in Fig. 4.5. The distribution of

the number of cytoplasmic monomers in steady state is shown in Fig. 4.10, for the
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particular case n = 20 and N0 = 20000. In this case, the average was N = 4.07,

corresponding to c = N/NC = 3.54 nM, slightly above the critical concentration.

The reason the fluctuations affect the force generating properties is as follows. A

linear function of a random variable will have an average value equal to the function

evaluated at the average of the random variable. However, if the function is nonlin-

ear and the tails of the random variable’s distribution are long enough, this is not

expected to hold. In our case, the function is the force-concentration relation shown

in Fig. 4.9, which is concave-down. The random variable is the concentration, shown

in Fig. 4.10, and is highly asymmetric towards the left (i.e. it has positive skewness).

In such a situation, the average force is less than the force predicted by the average

concentration. The fluctuations of the cytoplasmic monomers thus decrease the force-

generation at a given average concentration. These effects, in combination with the

effects of tip fluctuations described in the previous section, are shown in Fig. 4.11.
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Figure 4.10: Probability distribution of number of cytoplasmic monomers in steady-
state, N . The data was taken from the final 106 s of a stochastic simulation with
n = 20 and N0 = 20000. The distribution has mean 〈N〉 = 4.07 and standard
deviation 1.97. The long tail is cut off for clarity, although the number of monomers
did occasionally reach N = 16.
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Figure 4.11: The effect of cytoplasmic fluctuations in force generation by a poly-
mer bundle. Maximal steady-state force generation F by a filament bundle with
a stochastic ntip is shown as a function of steady-state concentration css. Various
average bundle thicknesses n are shown. The dashed lines represent the mean-field
predicted force-concentration relation (Eqs. 4.3, 4.11) if ntip = n independent tips
were all sharing the load. The points indicate fully stochastic simulations. A specific
bundle elasticity is imposed by forcing F = FB. Fluctuations in css systematically
decrease the bundle force compared to Fig. 4.9, and this effect is stronger for smaller
css.

4.4 Cell growth

As the cell grows, doubling its lateral length before dividing, so must the MreB

helix. There are two modes in which this growth may occur: the MreB helix may

unstretch, increasing its pitch, or its pitch may remain constant while the filament

length increases. It may also be a combination of these two modes. Experimental

results are mixed. Some reports observed the helix growing with constant pitch [41],

while Mbl has been observed to have longer pitches in longer cells [9,80]. We address

this question here.

We assume that the total number of monomers N0 is proportional to the cell

length and that the number of protofilaments n is length-independent. We simulated
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cell growth in a regime towards the low-N0 end of Fig. 4.4, with N0 = 3 × 103Lc so

that an average 3 µm cell contains 9000 MreB monomers, and towards the high-N0

end, with N0 = 104Lc. Fig. 4.12 shows how the steady-state helical pitch angle varies

as the cell length, Lc, ranges between 2− 4 µm.
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Figure 4.12: Pitch p as the cell length Lc grows for various filament bulk thicknesses
nbulk as predicted by stochastic simulation, for (a) N0 = 3 × 103Lc so that an aver-
age 3 µm cell contains 9000 MreB monomers, corresponding to regimes towards the
low-N0 end of Fig. 4.4, and (b) N0 = 104Lc, corresponding to the high-N0 end. For
most bundle thicknesses, the pitch is effectively constant as the cell elongates. How-
ever, for thicker bundles in the low-N0 regime, the helical pitch exhibits a significant
dependence on cell length, expanding as the cell doubles in size.

For most bundle thicknesses, n, the pitch is nearly constant as the cell elongates.

However, for thicker bundles in the low-N0 regime, the helical pitch increases sig-

nificantly as the cell doubles in size. This increase is due to fluctuations at small

cell lengths, Lc. While it appears strange that at large n, the stochastic effects are

larger, the pitch is determined by the filament length Lfil, which only depends on the

maximum protofilament length. While the mean protofilament length fluctuates less

with increasing n, the maximum protofilament length is an extremal property of the

bundle — and increases with increasing n. At small Lc, the relative fluctuations in

the cytoplasmic fraction also increases. For the larger N0 regime of Fig. 4.12B, the

pitches are much smaller, Lfil larger, and length fluctuations correspondingly smaller.

In the physiological regimes shown by boxes in Fig. 4.4, pitch should not change
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significantly during cell growth if the overall concentration of MreB monomers remains

constant. Experimental observations of considerable variability of the number of

helical turns per cell within cells of the same strain, size and growth conditions [80]

may imply considerable variability of MreB expression or of the cross-sectional number

of protofilaments n.

4.5 Dynamics of the subunits

In experiments on B. subtilis involving fluorescence recovery after photobleaching

(FRAP) of fluorescence-tagged Mbl, four helical turns on one side of the cell’s lon-

gitudinal axis were bleached while the other half continued to fluoresce. It took

approximately 8 minutes for the bleached halves to recover fluorescence at the same

level as the unbleached halves [9]. We obtain an upper bound for this time by calcu-

lating the average time unbleached parts of the MreB protofilaments take to treadmill

into the bleached regions; one half-turn in the polarized model and one quarter-turn

in the non-polarized models. Thus, in silico,

tFRAP ≈
πRc

a0sin θλtread

=
π
√

p2 + R2
c

a0λtread

(4.14)

for polarized array structures and half of that for non-polarized array structures. For

p ≈ 0.5 µm this yields between 3 and 6 minutes. The agreement of this timescale

with experiment suggest that monomer renewal by exchange with the cytoplasm may

not dominate the FRAP recovery time.

Several experiments have applied the MreB-specific small molecule A22 to quickly

and reversibly break down the MreB cytoskeleton by blocking polymerization [36,48].

Cells remain viable after recovery from A22-induced disruption of MreB and reform

their helical patterns in less than 1 minute for C. crescentus [36]. In E. coli MreB-

dependent oriC localization was recovered in less than one measurement interval

(25 minutes) [48]. In the context of our model, recovery from A22-treatment corre-

sponds to re-establishment of the steady-state MreB helix from a pool of cytoplasmic

monomers. We simulated our stochastic model from a nucleus of n protofilaments,

each of length 3 (as suggested for actin [19]), under the assumption that the nu-

cleation time is short [25]. Thicker bundles (larger n) reach their final steady-state
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length much faster than thin bundles, due to the presence of more free filament ends.

The equilibration times vary between 1 − 5 seconds. Fewer bundled protofilaments

took longer to reach a steady state, the longest being n = 1, with N0 = 10000, in

which the final length is reached in 5 seconds. These are consistent with A22 recovery

timescales.

We can also address the timescale of breakdown. Assuming that A22 simply

blocks polymerization, but does not change depolymerization dynamics, then it will

take t1 = Lfil/(k
p
off+kb

off ) ≈ 25 minutes for each protofilament to disassemble with no

internal free ends. If each protofilament has length Lproto with Lfil/Lproto free pointed

(or barbed) ends, then we would expect the disassembly to be correspondingly faster

by tm = t1/m. Experiments constrain the actual disassembly time in C. crescentus

[36] to be ≤ 1 min, implying m ≥ 25 and Lproto ≈ 300 nm. Analysis of single-molecule

experiments in C. crescentus estimates Lproto ≈ 392 ± 23 nm [44] by assuming that

protofilaments treadmill in place. If protofilaments also advect along the bulk MreB

cable, as we assume in our model, this estimate would be lower.

These estimates of assembly and disassembly timescales of the MreB helix can

also be applied to the reported midcell condensation of MreB in E. coli [76] and C.

crescentus [29], and of MreBH in B. subtilis [81]. Two possible mechanisms are an

elastic compression of the intact MreB helix to midcell driven by some (posited) motor

protein, or disassociation of the MreB helix and (transient) association with some

midcell binding partners. These mechanisms may occur in tandem. The timescales

of condensation and recovery are ≈ 30 minutes in C. crescentus which is considerably

longer than A22-induced breakdown. The maximum filament-end force needed to

compress a typical MreB helix in our model from Lc to a midcell spiral is Fmax
B ≈

10pN , and is comparable to the force generated by the RNA polymerase [48] and

the anchoring forces of integral membrane proteins [26]. Thus, both motor driven

compression and depolymerization are possible mechanisms for the observed midcell

condensation.
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4.6 Macromolecule trafficking

A vital role of MreB is the polar localization of proteins such as Tar in E. coli [75], the

cell polarity markers DivJ and PleC in C. crescentus [35], and the origin-proximal

region of the newly-replicated chromosome in E. coli, B. subtilis and C. crescen-

tus [48]. One possibility is that these passengers associate with yet-to-be-discovered

motor proteins that use MreB as a track to the poles [75]. A second possibility is that

these proteins simply bind to the helix and advect with the continuous treadmilling,

eventually ending up at one of the polar tips. A third possibility is that they associate

with leading tips of MreB protofilaments [28], perhaps via intermediary proteins anal-

ogous to formin for actin filaments. Here we quantitatively analyze these possibilities,

which are depicted in Fig. 4.13, together with associated translocation speeds with

respect to the fixed bacterial axis.

Bulk advection

Barbed associated protein

Pointed associated protein

Motor protein

Bulk associated protein

vbvp

vtread

vmot

Figure 4.13: Schematic of the different possible modes of transport along MreB bun-
dles. Velocities are absolute with respect to the cell in the indicated directions. Bulk
treadmilling advects bundles that span the cell length at a speed vtread towards the
slow-growing pointed (“−”) end. Side associated protofilaments, without constraint
forces at their tips, have different polymerization rates and so are not simply advected
with the bundle. Their tip velocities are vp and vb for pointed and barbed ends, re-
spectively. As discussed in the text, vb is always opposite the treadmilling direction.
Putative motor proteins would probably be polarized and would have a characteristic
speed vmot. The figure illustrates one polarized protofilament bundle, however it is
possible that two oppositely polarized bundles would exist within a cell — in which
case the polarity and velocities of the second bundle should be opposite the first.
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For any transport mechanism, a characteristic speed along the filament bundle,

vtrans, translates into a speed vz = cos θvtrans relative to the cell’s axis. Assuming the

protein initially binds at a uniformly random location along the bundle, the average

time to reach a pole is then

〈ttrans〉 ≈
Lc

2vz

=
Lc

2cos θvtrans

. (4.15)

This time can be compared to the cell division time to see whether it provides a

plausible mechanism for polar localization over many generations.

The myosins that transport organelles along actin tracks in eukaryotes travel at

speed vmot ≈ 200−400 nm/ s [71] (though speeds of up to 104 nm/ s have been reported

[64]). Attached to putative homologues of such myosins, macromolecules could be

translocated to the poles in ∼ 20 seconds. This is well within cell division times,

so this would be a viable polarization mechanism. However, no cytoplasmic motor

homologue has been identified in prokaryotic cells. Furthermore, almost all myosins

travel towards the pointed (“+”) tip along actin filaments [90], so a single polarized

MreB bundle would probably only support motor-driven localization to one pole while

unpolarized bundles would not support selective targeting to one pole and not the

other.

Static association of proteins to the side of MreB bundles would, through tread-

milling, lead to a translocation speed equal to the rate of advection times the monomer

spacing, λtreada0, in the direction of the pointed end of the bundle. In steady state,

the advection rate λtread = 1.2 s−1 is independent of the buckling force, the bundle

thickness, or the cytoplasmic concentration and leads to vtread = a0λtread = 5.92nm/s,

shown by the dashed line in Fig. 4.14C. Applying Eq. 4.15 to a typical configuration

with p = 1 µm and Lc = 3 µm, this yields 〈ttrans〉 ≈ 12 minutes, which is plausible

compared to cell-division timescales.

Proteins that could bind either directly, or via putative tip-binding proteins (anal-

ogous to formin in eukaryotes [28,46]) to the barbed end of free protofilaments could

be translocated in the opposite direction to the treadmilling advection. In an unbuck-

led (FB = 0) filament, lateral protofilaments treadmill at the same rate of the net

backwards advection of the bundle, accomplishing no net movement relative to the

cell’s axis. In a buckled filament, however, the monomer concentration is considerably
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above the critical concentration of a free protofilament, as illustrated in Fig. 4.5. As

a result, unconstrained laterally associated barbed ends grow faster than the bulk of

the bundle, with

vb = a0

[
(kb

oncss − kb
off)− λtread

]
= a0k

b
on(css − cc). (4.16)

For each bundle thickness and pitch simulated, the translocation times are shown in

Fig. 4.14A and speeds in Fig. 4.14C. Typical bundles with 20000 − 40000 molecules

of MreB and 8−15 protofilaments thick would transport passengers in 4−6 minutes,

considerably faster than laterally-associated proteins and in the opposite direction.

Similarly, proteins associated with the slow-growing pointed end have a net veloc-

ity given by

vp = a0 [(kp
oncss − kp

off) + λtread]

= a0k
p
on(css − cc). (4.17)

Note that free pointed ends are disassembling on average, though not as rapidly as the

treadmilling, so that vp < vtread. These translocation times are shown in Fig. 4.14B

and speeds in Fig. 4.14D. According to Eqs. 4.16 and 4.17, they are slower by a factor

of kb
on/k

p
on ≈ 10 compared to free barbed ends, taking several hours. These times are

probably too slow to be biologically relevant.

These protofilament-associated translocation modes offer a non-motor based mech-

anism for specific targeting of proteins to either pole in cells with a single polarized

bundle of MreB. The cell could specify the specific pole destination of a particular pro-

tein by specifying which part of an MreB protofilament it binds to: barbed-associated

proteins would end up at the pole at the barbed-tip of the MreB bundle with a speed

of vb, while laterally-associated proteins would end up at the pointed-tip pole with

speed vtread = a0λtread. Of course, these translocation mechanisms may also supple-

ment a (hitherto undiscovered) motor-based mechanism to provide targeting to either

pole with polarized MreB bundles. We do not see any way of specific targeting of

proteins to a given pole if the MreB bundle is not polarized or if there are anti-parallel

bundles, either with or without motor proteins.
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Figure 4.14: Mean translocation times 〈ttrans〉 for macromolecule passengers being
transported by MreB side protofilaments treadmilling on the side of the main ca-
bles. Constraint forces at the ends of the helix keep css above cc, so that significant
axial movement can be seen with respect to bulk treadmilling. Different modes of
transport along the cables are depicted schematically in Fig. 4.13. Barbed ends move
antiparallel with respect to bulk advection (a,c). Pointed ends move in the same
direction as bulk advection, however the slower polymerization rates lead to much
longer translocation times (b,d). Lateral traffic associated with parts of the bulk
cables move towards the pointed end at a0λtread, indicated in c) by the dashed line.
Any passenger dissociation and re-association from protofilament tips will increase
translocation times and decrease effective speeds.

If protofilaments dissociate at a significant rate from the main bundles then these

translocation times represent lower bounds. Additionally, any putative MreB-binding

proteins could strongly affect the polymerization kinetics. For example, ADF/cofilin

in eukaryotes increase kp
off for actin by ∼ 20 times. A bacterial homologue of such

a protein would decrease the delivery time of pointed-associated proteins by ∼ 20.

Similarly, in the presence of profilin, formin increases the barbed growth rate of actin

by 10- to 15-fold [31], and would decrease the delivery time of barbed-associated

proteins to within a minute, which is comparable to times for motor proteins.
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Proteins associated with pointed or barbed ends of protofilaments could be translo-

cated towards those poles at vp and vb, respectively. However the proteins could also

be directly recruited to distinct poles of the cell, due to the free ends of the MreB

bundles. The relative magnitude of translocation vs. direct recruitment is dependent

on the number of barbed or pointed protofilament ends. Tip-associated translocation

requires a significant number of laterally associated protofilaments tips to maximize

the translocation flux, while tip-directed polar recruitment requires unbroken protofil-

aments to minimize non-polar binding sites. Observations in C. crescentus [44] indi-

cate that protofilaments are short, supporting tip-associated translocation as a viable

mechanism in vivo.

4.7 Implications and conclusions

The model introduced in Chapter 3 leads naturally to steady-state helical config-

urations described by four quantities: the helical pitch, the concentration of free

monomers, the total abundance of MreB and the bundle thickness. The main result

of this chapter is a relationship between these, both approximate analytic expressions

(Eqs. 4.10, 4.9.) and through stochastic simulation (Figs. 4.4, 4.5). Given any two of

these quantities, our model predicts the other two.

This is relevant for two reasons. The first is practical. Two of the parameters

can be measured experimentally, pitch through fluorescence tagging and microscopy

[9,17,49] and total abundance through quantitative immunobloting [41,50]. The other

two have been considerably more difficult to measure: the cytoskeletal protein FtsZ

has been studied for many more years (Sec. 2.3.2) yet its bundle thickness remains

entirely unmeasured. Measuring the in vivo amount of MreB not associated with

the bundle has also never been achieved. Our model thus allows two measurable

properties to predict two properties that would be hard to measure directly.

The second reason is theoretical. The steady-state predicted by our model provides

an immediate foundation upon which to address other properties of the bacterial cy-

toskeleton. One example in the previous chapter is that of macromolecular trafficking.

The steady-state configuration gave rise to several obvious methods for transporting
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packages to the poles. The timescales estimated from our Thermotoga-scaled param-

eters allowed us to reject one of these modes (association with free pointed ends),

and propose a method for pole discrimination that could lead to the assymmetry

of C. crescentus (association with free barbed ends, along with association with the

stable bulk of the bundle). In the event that our model is modified, either in the

parameters or in fundamental details, it is likely that similar relationships between

the configuration parameters can be derived.

A significant part of this chapter was concerned with the effects of stochasticity

in the small, noisy environment of a bacterial cell. This lead to the surprising result

that a bundle of polymerizing protofilaments can generate more force than if all n

tips were constantly pushing the load. The role of stochastic fluctuations in biological

systems has been recently stressed [55,69]. The behavior of the tip of a growing, force-

generating bundle of polymers that we analyzed here provides another example of the

importance of such stochasticity in biology.



Chapter 5

Results: Elastic consequences

The previous two chapters beg the following question: What mechanical forces cause

the MreB filament to take on a helical configuration? The separation of timescales

described in Eq 4.1 and 4.2 allowed us to address the polymerization dynamics sepa-

rately from this question. Now we explore how the filament responds to its internal

elastic forces and external constraints.

We have developed a finite element method to simulate the behavior of MreB

inside a small bacterial cell. We first numerically verify the conclusions of Sec. 3.2.2,

that a filament with length larger than the cell length will not simply buckle into a

helix. We also verify the timescale calculation of Eq. 4.1. Then, three models are

proposed for possible external forces, each increasing in complexity and physiological

relevance.

5.1 Elastic dynamics simulator

In order to explore the elastic behavior of an MreB filament inside a cell in any non-

trivial situation, numerical simulation is required. Moreover, the simulation must

operate in a particular regime:

• The low Reynolds number environment of the cytoplasm. The Reynolds number

is a dimensionless quantity describing the viscous nature of a fluid, defined as

Re ≡ vl/η where v is the characteristic velocity, l is the characteristic length

scale, and η is the viscosity. If Re � 1, we are in the viscous limit, and instead

of Newtonian dynamics (ΣF = ma), we have ΣF ∝ v/(lη). Inertia (mass) plays

no role [51]. In the cytoplasm, Re ≈ 10−7 and we are certainly in the viscous

limit.

• The filament is semiflexible, meaning it is much shorter than its persistence

61
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length (i.e. Lfil � ξp), but longer than its radius of curvature (which is

maximally the radius of the cell, Rc). It is also nearly inextensible: the en-

ergy density for stretching is of order EA = 20 pN, while for bending it is

B/R2
c = 6× 10−2 pN.

• The simulation must preserve the symmetry inherent in the situation. This

symmetry cannot be imposed, since we wish to explore asymmetric situations

and situations in which symmetry is spontaneously broken.

• The filament is subject to external boundary conditions, both mechanical, where

the external forces are specified, and kinematic, where a constraint is placed on

the configuration, such as confining it within or on a cell wall. It is also subject

to large displacements, where parts of the filament may be rotated by 90◦ and

displaced by several microns, precluding perturbative methods.

Several methods are available for simulating elastic rods. Simple ball-and-spring mod-

els have been used [92], however they require very small discretization for accuracy,

especially since the curvature driving bending dynamics is proportional to a second

spatial derivative (Eq. 3.21). Finite element methods have been developed for elastic

rods [7], although not for large deflections or in the viscous limit. For the particular

case of filaments in bacteria, statistical mechanical methods such as the Metropolis

algorithm have been used to find energy minima [2], however this leaves the dy-

namics unaddressed. The intrinsic difficulty in the problem has even prompted the

construction of “physical models” made of polyurethane and metal [91] to simulate

the behavior of biofilaments in bacteria.

We chose to develop a simulator based on finite element methods, in which the

filament is discretized into nel elements of length le, and each of their dynamics evolves

according to

∂txi = −ρi
∂H
∂xi

(5.1)

where xi is a coordinate, ρi is an associated mobility (roughly an inverse viscosity),

and H is the elastic Hamiltonian given in Eq. 3.14. The details of the algorithm

and its implementation are described in Appendix B. To our knowledge, this is the

first finite element analysis of the dynamics of a filament in the viscous limit that
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includes flexure, torsion and stretching. The numerical timestep is restricted by the

microscopic elastic timescale (distinct from the macroscopic timescale in Eq. 4.1),

which is set by an eigenvalue of a matrix involved in the finite element analysis,

Eq. B.15, and is ∆t ≈ 10−6 s.

5.2 A filament inside a cell

We are now in a position to simulate the behavior of a 10 µm filament inside a bacterial

cell. For these simulations, we assumed the filament was n = 5 protofilament thick,

the lower bound suggested by our results in Chapter 4 (Fig. 4.4). This gives bending

and stretching modulii B = B0n
2 = 2.5 × 105 pN nm2, EA = EA0n = 102 pN and a

bundle diameter of
√

5a0 ≈ 11 nm, where the subscripts indicate the modulii of an

individual polymer.

We do this with four boundary conditions. For each we simulated from five initial

conditions: straight and compressed on the lateral wall, a perfect helix with θ =

arctan (Lc/Lfil) = 1.26 rads, a ring at midcell, a ring at one pole, and the main

diagonal of the cylinder.

• Hemispherical endcaps, free inside cell

Starting from a compressed, straight filament along the main diagonal — the

longest straight line in the cylindrical portion — the filament quickly buckles

into an asymmetric configuration and, by t = 0.5 s, has relaxed into an equi-

librium configuration resembling a figure-of-eight. Two snapshots are shown in

Fig. 5.3. In Fig. 5.2, we show the elastic energy of the filament. The initial

energy is 1.5× 104 pN nm (all due to compression), while the final equilibrium

energy is 4035 pN nm, which is lower than the maximal ellipse (5000 pN nm from

Eq. 3.41), and still lower than for a helix (7100 pN nm from Eq. 3.32). It equili-

brates within 0.2 s, in agreement with the timescale estimated from Eq. 4.1, of

telsatic ≈ 0.47 s. The energy is monotonically decreasing, however not smoothly

so: sudden drops in energy occur when kinks snap themselves out, in between

slower relaxation dynamics.

• Flat endcaps, free inside cell
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Figure 5.1: The elastic dynamics of a filament free inside a cell. (Top) the initial and
equilibrium configurations of a filament inside a cylindrical cell with hemispherical
endcaps. The final configuration at t = 0.5 s is shown. From Fig. 5.2, the configuration
has equilibrated. (Bottom) A filament constrained to stay within a right cylinder with
flat endcaps. As for the previous simulation, the final configuration at t = 0.5 s is in
equilibrium.

Fig. 5.3 shows the same simulation as above, except that the filament is allowed

forbidden from entering the hemispherical poles. Again, the filament buckles

and assumes an extended configuration that is non-helical.

• Hemispherical endcaps, membrane affinity

While MreB itself is not an inner-membrane protein, it is always found just be-

low the membrane [15,86]. This may be for geometric reasons (the most relaxed

configurations all involve the filament pushing outward against the membrane),
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Figure 5.2: The elastic energy of a 10 µm filament inside a cylindrical cell with hemi-
spherical endcaps, allowed to move freely within the cell.

or it may be due to an affinity for the membrane, for instance through the pep-

tidoglycan synthesizing machinery (Sec. 2.2.1). Such an affinity could constrain

the filament to the cell wall. For the remainder of the chapter, we explore the

consequences of this assumption.

If the filament is constrained to the membrane but allowed in the membrane,

it will assume the paperclip configuration depicted in Fig. 3.4B. As predicted,

the equilibrium energy is 3000 pN nm, and the configuration is very much non-

helical. It is shown in Fig. 5.3.

• Flat endcaps, membrane affinity

Surprisingly, if the filament is initially configured as a (perfect) helix, it equi-

librates into a nearly-helical configuration. Fig. 5.3 shows three snapshots as

the filament equilibrates. The filament tips are located initially in the cusp

between the flat caps and the cylindrical cell, and would have to overcome an

energy barrier to escape. For this reason, the near-helical configuration is in

equilibrium.

Only one of these boundary conditions and initial conditions produced a helix-like

configuration similar to what is observed experimentally. For this boundary condition,

there must be a strong affinity for the membrane and a mechanism to exclude the
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Figure 5.3: The elastic dynamics of a filament constrained to the membrane of a cell.
(Top) the initial and equilibrium configurations of a filament inside a cylindrical cell
with hemispherical endcaps. (Bottom) A filament constrained to stay within a right
cylinder with flat endcaps. As for the previous simulation, the final configuration at
t = 0.5 s is in equilibrium.

filament from the poles. For most boundary conditions, the filament buckles into

different shapes: as stated in Chapter 3, there must be some external forces that

cause a torque in the axial direction to create the helical configuration.
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5.3 Static external forces

The simplest possible forces giving rise to an axial torque are forces acting in the

azimuthal direction, parallel to the surface of the cylindrical portion of the cell wall,

φ̂ ≡ −yx̂ + xŷ

x2 + y2
. (5.2)

as shown in Fig. 3.3. There is an abundance of examples of molecular motors in both

eukaryotes and prokaryotes. Kinesin on microtubules can generate a force between

4 − 8 pN, and myosin on actin can produce 1 − 10 pN [39]. The RNA polymerase is

stronger than both of these, generating a force up to ∼ 25 pN [48]. Moreover, the

RNA polymerase interacts with MreB (Sec. 2.2.4). Another possibility is a force is

due to the cell wall synthesis machinery that putatively associates with the MreB

helix (Sec. 2.2.1). This molecular complex may rotate around the circumference of

the lateral walls as it inserts new peptidoglycan, pulling azimuthally on the MreB

helix.

We exposed a Lfil = 3 µm filament, constrained to lie on the membrane of a

Lc = 3 µm cell, to forces at its endpoints, ~F ext = ±3 pNφ̂. The result, shown in

Fig. 5.4A, appears nearly helical. For closer inspection we define the instantaneous

pitch, analogous to the helical pitch (Eq. 3.46)

p(s) ≡ 2πRc

tan θ(s)
, (5.3)

shown in Fig. 5.5, we see that the configuration is not precisely helical, since the pitch

varies significantly over the filament. It is, however, always of the same sign. We refer

to configurations of a filament as helix-like if it is everywhere on the membrane and if

the instantaneous pitch is always the same sign. A configuration with nearly-constant

instantaneous pitch is nearly helical.

For the cell to arrange forces to oppose one another, as in the above model, long-

range coordination would be required. A more likely biological boundary condition

is that the active azimuthal force is at one end of the filament, while the other end

is anchored in place. The anchor point would be expected to produce a constraining

force equal and opposite to the force at the other end, and by intuition, the configu-

ration should be the same as in Fig. 5.4A. We simulated this situation, and indeed,

found this result, shown in Fig. 5.4B.
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Figure 5.4: Equilibrium configuration of a 3 µm filament on the membrane of a bac-
terial cell subject to azimuthal forces ~F ext = ±3 pNφ̂ (A) at each end, and (B) at
one end only, with the other end anchored to remain stationary.

5.3.1 Numerical test: varying element size

To test the accuracy of the code, we repeated the azimuthal force simulation while

varying the element length le, effectively changing the spatial and temporal discretiza-

tion. The results are compared for 3 different values of le in Fig. 5.5B. The steady-state

configurations are convergent, and are qualitatively similar. The maximum discrep-

ancy between nel = 16 elements and nel = 64 elements is 8%. We use 16 elements

(so that one element has length le = 187.5 nm) for our simulations. Although we

are clearly not yet in the “continuum limit”, this gives an acceptable compromise

between accuracy and computational efficiency.

5.3.2 Azimuthal force and steady-state pitch

We obtain a relationship between the magnitude of the azimuthal force, F ext, and

the pitch in the resulting steady state. This pitch is not homogeneous along the

filament, and we plot the mean, minimum, and maximum for several values of F ext,

in Fig. 5.6. As expected, the helix tightens as the force is increased. Pitches within
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Figure 5.5: Instantaneous pitch in equilibrium configuration of a 3 µm filament on the
membrane of a bacterial cell subject to azimuthal forces ~F ext = ±3 pNφ̂ at each end.
This is shown for varying numbers of elements. The maximum discrepancy between
nel = 16 elements and nel = 64 elements is 8%.

the reported experimental ranges, 0.4 − 2.0 µm [41, 44], can be achieved by forces of

5− 20 pN, a range that can be generated by motor proteins.

To explore the dependence on filament length, we simulated the same external

force of F ext = 6 pN, acting on filaments of lengths Lfil ∈ [3, 6, 8, 12] µm. This is

shown in Fig. 5.6. The instantaneous pitch did not qualitatively change, although its

magnitude is slightly dependent on filament length.

5.4 Dynamic external forces

The second model of physiological torques we explored has only one end of the filament

experiencing an azimuthal force, while the other end is free. In the absence of viscosity,

this would lead to a ring-like configuration in steady-state, since nothing is opposing

the force. However, in the viscous environment of the cell, the filament will experience

a drag force. This drag is a complex function of the configuration of the cylinder —

a filament parallel to the z-axis being dragged around the cylinder clearly experience
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Figure 5.6: (Left) Instantaneous pitch in equilibrium configuration of a 3 µm filament

on the membrane of a bacterial cell subject to azimuthal forces ~F ext at each end.
The instantaneous pitch varies along the filament: the square indicates the averages,
and the vertical bars indicate the minima and maxima. (Right) Same, for fixed
F ext = 6 pN, and varying Lfil. There is a weak dependence on filament length.

more drag than one that is in a ring around the z-axis.

The results for F ext = 3 pN are shown in Fig. 5.7. Unlike in the static case, the

configuration is not symmetric, however it is still helix-like. The pitch is tightest near

the point of application of the force, and increases further out as the energy from the

motor dissipates. Corresponding results for varying F ext are shown in Fig. 5.8. The

pitches are much longer than in the previous model due to the longer tail of higher

pitches away from the force.

The filament continually rotates around the membrane. This occurs because the

torque has no opposing force with which to cancel. In Fig. 5.8B we show the angular

velocity in steady-state. The relationship appears slightly concave down, but nearly

linear in this regime. The inverse slope corresponds to an angular viscosity, defined

by µ in

F̂ ext · φ̂ = µω. (5.4)

where ω = ∂tφ is the angular velocity. For the dynamic force model, µ = 3.55 ×
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Figure 5.7: Equilibrium configuration (left) and instantaneous pitch (right) of a 3 µm

filament on the membrane of a bacterial cell subject to azimuthal forces ~F ext = 3 pNφ̂
at the left end.

10−3 pN s/rad.

5.5 Distributed dynamic external forces

The next level of detail we considered was the distribution of forces. It is more likely

that the molecular motors are not localized at one part of the filament, but rather ap-

pear in some distribution along its length. If they are homogeneously distributed, the

filament will not twist into a helix-like configuration. The polymerization dynamics

we explored in Chapter 4 lead naturally to an inhomogeneous distribution: Consider

a polarized bundle in which most of the subunits being exchanged with the cytoplasm

are at the tips. If the molecular motors bind to the filament at a constant rate, they

will appear in greater density on subunits that have been incorporated in the filament

longest. Since treadmilling means the subunits are constantly advecting towards one

pole, the motors will appear with high density at the old (pointed) end, with zero

density at the new (barbed) end, and the density will vary linearly in between.
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Figure 5.8: (Left) Instantaneous pitch of the steady-state configuration of a 3 µm

filament on the membrane of a bacterial cell subject to one azimuthal forces ~F ext

at its left end. The square indicated the averages, and the vertical bars indicate the
minima and maxima. (Right) Angular velocity of in the resulting steady-state. The
relationship appears nearly linear — the dotted line shows a linear regression with
inverse slope µ = 3.55× 10−3 pN s/rad.

In this model, the force line density, in pN/ nm, is

ν(s) =
2Fext
L2

fil

s (5.5)

so that the total force on the filament is

Ftot =

∫ Lfil

0

ν(s)ds = Fext (5.6)

We discretize this force density and apply it to the nodes between each element.

The results for F ext = 3 pN are shown in Fig. 5.9. The instantaneous pitches

are lower than for point forces, as expected, since the force at the right is effectively

acting against the force at the left in addition to the drag. There is also a qualitative

difference in the inhomogeneity of the pitch. While in the point-force model, the

instantaneous pitch is high in the middle and lower near the edges, the opposite is

true for the distributed force model. The pitches are not symmetric, however the

asymmetry is slight.
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Figure 5.9: Equilibrium configuration (left) and instantaneous pitch (right) of a 3 µm
filament on the membrane of a bacterial cell subject to azimuthal forces totaling
F ext = 3 pN distributed along its length according to Eq. 5.5.

As for the previous two models, we repeated the simulation for various F ext.

The pitches and angular velocities are shown in Fig. 5.10. As in the dynamic point-

force model, the relationship appears linear, with viscosity µ = 3.85× 10−3 pN s/rad,

slightly higher than for the dynamic point-force model.

5.6 Implications and conclusions

The finite element analysis in this chapter offers a preliminary exploration of the

elastic dynamics of MreB in vivo. The main conclusion is that forces in physiolog-

ical range of motor proteins, between 1 − 25 pN, can easily generate pitches in the

physiological range, between 0.4− 2.0 µm. The simulator will also allow much more

complex models to be analyzed.

A coherent explanation for cell wall synthesis in rod-shaped bacteria emerges from

the previous two chapters. A putative complex of cell wall synthesis machinery is

associated with the MreB helix, and is moving around the circumference of the lateral

walls, inserting new peptidoglycan moieties as it goes. This generates an azimuthal
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Figure 5.10: (Left) Instantaneous pitch of the steady-state configuration of a 3 µm
filament on the membrane of a bacterial cell subject to distributed azimuthal forces
~F ext. The square indicated the averages, and the vertical bars indicate the minima
and maxima. (Right) Angular velocity of in the resulting steady-state. The dotted
line shows a linear regression with inverse slope µ = 3.85× 10−3 pN s/rad.

force back on the helix. Meanwhile, the complex is pushed in the axial direction

by MreB. This can occur with bulk advection or any of the possibilities discussed in

Sec. 4.6. Thus, there may be a functional interdependence between MreB and the cell

wall synthesis machinery. The machinery could require the MreB track to move it

axially, necessary for the insertion to happen evenly along the lateral wall [12,14,58].

Conversely, MreB requires the machinery to pull it into a helix.

A substantial distinction between the dynamic external force models and the static

external force model is the presence of continual rotation in the steady-state, which

occurs in the dynamic models since the torque(s) do not balance. Experimentally,

Mbl in B. subtilis changed curvature and orientation, and it has been suggested that

it does indeed rotate inside the cell [9]. However, the speeds at which our models

predict they rotate, 103−104 rad/s, are very high compared with the intervals between

fluorescence imaging, which occurs over the course of minutes [9]. This speed is highly

dependent on the viscosity, which may be complicated by interaction with the inner
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membrane [53]. The viscosity of the membrane itself is ηm ≈ 10−7 pN s/ nm2 [73],

which is 100 times larger than the viscosity of the cytoplasm. The viscosity is the

only place where time enters our dynamics, and thus if we were to switch η with ηm, all

our dynamic times would simply decrease by a factor of 100; the configuration, both in

static and dynamic external forces, would be unchanged. Interaction of an extended

body in, on, or near a fluid membrane is more subtle [53,54,73]. The no-slip boundary

condition requires the fluid membrane to move with the bulk fluid and introduces a

length scale ηmd/η ≈ 500 nm [54] where d = 5 nm is the membrane thickness [5]. Rods

longer than this length exhibit more complicated dynamics. Including such effects

will require more details about the way in which MreB interacts with the membrane.

A rotating, advecting MreB bundle raises a curious possibility for the relationship

between MreB and other helices in bacteria. As discussed in Sec. 2.4, helices such as

MreC and SetB appear related to MreB, but do not have the same pitch. If the MreB

helix rotates with angular velocity ω, and a second protein decorates it, riding with

velocity v, then the space curve traced out by the decorating protein will be another

helix with a distinct pitch given by

1

pD

=
1

p
− ωRc

v

√
1

p2
+

1

(2πRc)2
. (5.7)

For a particular MreB pitch p and angular velocity ω, any decorating pitch, with

either handedness, can be achieved by appropriate choice of v. While there are

no known biochemical analogies to argue for such a mechanism (J. Theriot, private

communication), the connection between distinct helices through rotation remains a

formal possibility.



Chapter 6

Conclusions

We have presented a model of MreB based on the polymerization dynamics and elastic

properties of a bundle of actin-like polymers. It is self-consistent and addresses the

establishment and steady-state of the helix on the elastic timescale of microseconds

(Chapter 5) and the polymerization timescale of seconds (Chapter 4).

The model also addresses the many functions of the helix, such as macromolecular

transport and cell wall synthesis. Most of the hypotheses are based on speculation

articulated qualitatively in reviews [8, 59, 77]. This thesis adds two new major con-

cepts. The first is that polymerization at the tips of the MreB bundle generates a

force that varies with helical pitch (via the cytoplasmic concentration), as does the

elastic force acting against these tips. This leads to a steady-state in which these

forces balance. A result of this thesis is the relationship of this steady-state to system

variables, namely the total number of subunits of MreB and the bundle thickness.

The second concept is the idea that molecular motors pulling along the circumfer-

ence of the lateral cell wall are responsible for winding the MreB bundle into a helix.

Our exploration of this hypothesis in Chapter 5 is preliminary, however we have shown

that forces in the physiological range can produce pitches in the physiological range.

The conclusions of this thesis also suggest refuting two widespread notions about

MreB. The first is that “linear polymers composed of identical subunits, constrained to

the inner surface of a cylinder... would always lead to a helical or coiled configuration...

unless the initial axis of polymerization was parallel or perpendicular to the long axis

of the cylinder” [77]. These linear polymers have a bending stiffness and wish to

minimize their elastic energies, thus will often organize into non-helical configurations.

With that said, a polymer with an intrinsic curvature (such as FtsZ and tubulin [81])

or whose membrane affinity has an anisotropy (such as MinD [2]) will have different

elastic energetics. If MreB turns out to have either of these biochemical properties,
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our conclusion will certainly change.

The second notion is the requirement of molecular motors analogous to myosin

to move cargo along MreB [8, 77]. We have shown that in steady-state, it is possible

to obtain bidirectional transport in the MreB subunits themselves. This provides a

myosin-free way to localize cargo to the cell poles, in biological timescales, together

with a method for pole discrimination (Sec. 4.6).

6.1 Further work

Several questions have been raised by this work:

• This thesis highlights the need for the polymerization rate constants of MreB

in order to make precise quantitative predictions. The mean-field calculation

of steady-state suggests only the critical concentration is important, however

stochastic simulation demonstrates a need for all four on- and off-rates. How

much will they differ from those of actin, and what effect will this have on our

results?

• What is the nature of the subunits in the cytoplasm? We have assumed that

they are mostly monomers. This appears false for FtsZ [81] and true for actin

only in the presence of sequestering agents [34]. If a fraction of the subunits in

the cytoplasm are polymeric, they would not participate in the force-generation

mechanism, and their isodesmic exchange with the bundle would not affect the

steady-state. This would have the effect of reducing the effective total number

of subunits N0, dilating the x-axis of Fig. 4.4.

• In our models of macromolecule translocation, the package being transported

was assumed to exert a negligible force on the helix. This is probably true for

proteins, but may not be true for larger macromolecules such as the chromo-

some. What are these response forces, probably acting in the axial direction?

What is their effect on the elastic arrangement of the helix, and can it be

observed through microscopy? The finite element simulator gives us the oppor-

tunity to address this question
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• How much can we extrapolate from the conclusions of Chapter 5? Computa-

tional cost constrained the simulations mostly to short filaments of 3 µm, much

shorter than their in vivo length. Although the quantitative details will cer-

tainly differ for longer filaments, how will their qualities change? Increasing

the length to physiological sizes had a small but significant effect on pitch in

Fig. 5.6, suggesting our overall conclusions will be preserved.

• What are the differences between the homologues of MreB that are present in

Gram-positive species, such as Mbl and MreBH in B. subtilis? Some insight

is gained into their interactions via the boxed regimes of Fig. 4.4: the pitch

and concentration we predict differ whether they bundle together or separately.

However, functionally they appear to fulfill different roles that are all performed

by the unique MreB in Gram-negative species [10]. What implications does this

have for our model?

• Are there prokaryotic analogues to any of the ∼ 100 actin-binding proteins

that regulate MreB? As actin’s interactions with these regulating proteins were

mapped out, the quantitative modeling of actin became a rich field [68]. Our

present model has shown that polymerization dynamics alone can account for

many of MreB’s functions. If there are few or no MreB-regulating proteins,

further modeling will contribute to understanding how prokaryotes achieve this

comparative simplicity. If there are regulating proteins, a wealth of modeling

analogous to actin will ensue.

This is one of the first attempts to build a quantitative model of MreB, along with

Andrews and Arkin (2007) [2] and Wolgemuth et al. (2005) [91]. Andrews and Arkin

(2007) state an alternative model for elasticity based on intrinsic curvature, intrinsic

twist and anisotropic membrane affinity, ignoring polymerization dynamics. Wolge-

muth et al. (2005) impose the filament’s helical configuration and explore its effect

on a growing cell envelope. Clearly there is much work to be done, both theoretically

and experimentally. For the bacterial cytoskeleton, the interplay between modeling

and experiment begins.



Appendix A

Treadmilling in an infinite square well

Suppose a filament is stuck between two rigid barriers (with, eg, Young’s modulus

� Fstall). When the filament tips reach the edge, new monomers cannot associate

with the tips, thus kb
on = kp

on = 0. The filament will remain stationary, however

individual monomers will advect towards the pointed end. We calculate the rate of

advection as follows.

Let T be the (random) time to advect by one monomer. In the following we use

the standard notation that E[X] is the expected value of random variable X, and

E[X|A] is the expected value of X, given that A is true. There are four possible

sequences of events before the filament is returned to its constrained length: (b
off)(

p
on),

(b
off)(

b
on), (p

off)(
p
on) or (p

off)(
b
on). By total expectation,

E[T ] = E[T |(b
off)(

p
on)]P ((b

off)(
p
on))

+ E[T |(b
off)(

b
on)]P ((b

off)(
b
on))

+ E[T |(p
off)(

p
on)]P ((p

off)(
p
on))

+ E[T |(p
off)(

b
on)]P ((p

off)(
b
on))

E[T ](kb
off + kp

off)(λ
b
on + λp

on) =
(
E[T b

off|T b
off < T p

off] + E[T p
+1|T

p
+1 < T b

+1]
)
kb

offλ
p
on

+
(
E[T ] + E[T b

off|T b
off < T p

off] + E[T b
+1|T b

+1 < T p
+1]
)
kb

offλ
b
on

+
(
E[T ] + E[T p

off|T
p
off < T b

off] + E[T p
+1|T

p
+1 < T b

+1]
)
kp

offλ
p
on

+
(
2E[T ] + E[T p

off|T
p
off < T b

off] + E[T p
+1|T

p
+1 < T b

+1]
)
kp

offλ
b
on

(A.1)

where λb
on ≡ kb

onc− kb
off and equivalently for λp

on.

Note that although polymerization events at the two tips are independent, it is

not true that the expected time for barbed depolymerization, given that it occurred
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before a pointed depolymerization, is the same as the expected time for barbed de-

polymerization alone. That is,

E[T b
off|T b

off < T p
off] 6= E[T b

off] = 1/kb
off. (A.2)

Instead of solving for E[T b
off|T b

off < T p
off] (which is non-analytic), observe that

E[min{T b
off, T

p
off}] =

1

kb
off + kp

off

(A.3)

and, again by the law of total expectation,

E[min{T b
off, T

p
off}}] = E[T b

off|T b
off < T p

off]P (b
off) + E[T p

off|T
p
off < T b

off]P (p
off) (A.4)

thus

1 = E[T b
off|T b

off < T p
off]k

b
off + E[T p

off|T
p
off < T b

off]k
p
off. (A.5)

Now rearranging Eq. A.1

E[T ] ((kb
off + kp

off)(λ
b
on + λp

on) + kb
offλ

b + kp
offλ

p + 2kp
offλ

b)

= E[T b
off|T b

off < T p
off]k

b
offλ

p + E[T p
off|T

p
off < T b

off]k
p
offλ

b

+ E[T b
off|T b

off < T p
off]k

b
offλ

b + E[T p
off|T

p
off < T b

off]k
p
offλ

b

+ E[T b
+1|T

p
+1 < T b

+1]k
b
offλ

p + E[T p
+1|T b

+1 < T p
+1]k

p
offλ

b (A.6)

Making use of Eq. A.5, this simplifies to

E[T ] =
λp + λb + kb

off + kp
off

kb
offλ

p − kp
offλ

n
=

kp
on + kb

on

kp
offk

b
on − kb

offk
p
on

.

Since this is still exponentially distributed [72], we reciprocate it to obtain the rate

of constrained treadmilling,

λadvect =
kp

offk
b
on − kb

offk
p
on

kp
on + kb

on

= λtread (A.7)

independent of concentration and identical to the rate of free treadmilling.



Appendix B

Finite element analysis of a biofilament inside a cell

B.1 The finite element method

For an elastic body with Hamiltonian (Eq. 3.14)

H =
1

2

∫ Lfil

0

[(
Bκ(s)2 + Cτ(s)2

)
n(s)2 + EA(1− |∂s~r|)2 n(s)

]
ds (B.1)

in a viscous fluid, the time-evolution is given by

∂tq(s) = −ρ(s)
δH

δq(s)
(B.2)

where the q(s) are generalized coordinates, which include the position {x(s), y(s), z(s)}
and orientation of the rod. For a continuous body, there are an infinite number of

coordinates corresponding to the position and (in the case of a Cosserat rod) angles

of the body at every point. The ρ(s) are mobilities, which include inverse viscosities

and drag coefficients.

The finite element method seeks to solve Eq. B.2 for small perturbations of qi by

the approximation

∆tqi = −ρi

∑
j

∂2H
∂qi∂qj

qj (B.3)

which is the first-order Taylor expansion of Eq. B.2, valid for small qj. Furthermore,

instead of continuous q(s), the body’s configuration is discretized so that one ele-

ment is described by a finite number of configuration variables. The Hamiltonian

Eq. B.1 requires the coordinates q(s) at every point. To accomplish this, the finite el-

ement method first divides the body into a finite number of elements, each of length

le, so that there are nel = Lfil/l
e elements. Then shape functions are introduced,

qshape(s) = q(q1, q2, ..., s), that describe the configuration between elements. The

power of the finite element lies in this fact: space has not been discretized, but rather

the set of possible configurations.
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Considerable research has gone into finding the best shape functions for particular

situations [40,94]. For any smooth shape function, for smaller le, Eq. B.3 will converge

to Eq. B.2. We use a discretization of twelve nodes per element,

{xe, ye, ze, φe
x, φ

e
y, φ

e
z, x

f , yf , zf , φf
x, φ

f
y , φ

f
z},

together with shape functions that have been used for the dynamics of Cosserat rods,

based on series solutions of the equilibrium equations [7],

xshape(s) = xe(s) + φe
ys−

(
3xe − 3xf + 2leφe

y + leφf
y

)
(s/le)2 (B.4)

+
(
2xe − 2xf + leφe

y + leφf
y

)
(s/le)3 (B.5)

yshape(s) = −φe
xs−

(
3ye − 3yf − 2leφe

x − leφf
x

)
(s/le)2 (B.6)

+
(
2ye − 2yf − leφe

x − leφf
x

)
(s/le)3 (B.7)

zshape(s) = ze +
(
zf − ze

)
(s/le) (B.8)

The vectors {~φe, ~φf} represent the spin vector required to rotate the coordinate axes

{x̂, ŷ, ẑ} into {~d1, ~d2, ~d3}. We then plug the shape functions into the definitions of

the directors {~d1, ~d2, ~d3} and Eq. 3.15 to get the curvature and twist, then into the

Hamiltonian, and finally into Eq. B.3. Computer algebra system Maple (Maplesoft)

was used for this. The result is, for each element, “stiffness matrix”

Kij ≡ −ρi

∑
j

∂2H
∂qi∂qj

qj (B.9)

(the language is standard, although not accurate in the viscous case), that is 12× 12

elements in size. The time evolution of one element is given by

∆t~q
e = Ke~qe. (B.10)

Recall that the filament is one connected structure, and all elements share their nodes

with the previous and following element. The time evolution of the entire system is

∆t~q =

nel∑
e=1

Ke~q (B.11)

where ~q contains all nodal displacements: there are d = 6(nel + 1) of them. The

matrix
∑

Ke is called the global stiffness matrix.
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B.2 The stiffness matrix of a Cosserat rod element

The drag coefficients for a right cylinder were solved numerically in the 1970s and

1980s [4, 84, 85]. For a cylinder of length le and diameter a, lying on the z-axis, the

mobilities are approximately

ρxyz ≈ 2

(6a2)1/3η le

(
log pe + 0.312 + 0.565/pe + 0.1/p2

e

6π(2pe/3)1/3

)
(B.12)

ρθ ≈ 8

6a2η(le)3

(
9

16

log pe − 0.662 + 0.917/pe − 0.05/p2
e

πp2
e

)
(B.13)

ρφ ≈ 8

6a2η(le)3

(
8π0.64

(
1 + 0.677/pe − 0.183/p2

e

))−1
(B.14)

where pe = le/2a. Translation mobility is given by ρxyz, while ρθ corresponds to ro-

tation in the x-y plane and ρφ to rotation in the z-axis. For an element of a filament,

whose ends are not exposed to the fluid, these are approximations. For instance,

for an element in a much longer filament we would expect only linear terms in the

translational mobility, ρxyz ∝ 1/le. Conversely, giving each element a separate mo-

bility ignores non-local effects mediated by the fluid. This approximation is justified

since the local effects are the leading order, separated by the log of the aspect ratio

from non-local interactions [74]. A further simplification is made by assuming an

equal translational mobility in all directions, when in fact it may differ by a factor of

two [54]. Similar mobility coefficients are obtained from the “shish-kebab” model for

a rod-like polymer [16].

The stiffness matrix for one element was found using Maple and is shown in

Fig. B.1. This matrix has eigenvalues[
−2

ρXEA

l
,−1/2

ρΨ (B + 4 C)

l
,−1/2

ρΦB

l
,

−3/2
B (ρΦl2 + 4 ρX)

l3
,−1/2

ρΦB

l
,−3/2

B (ρΦl2 + 4 ρX)

l3
,

0, 0, 0, 0, 0, 0
]
. (B.15)

The six zero eigenvalues correspond to the six rigid body motions, under which the

element can move without changing its energy. The other six give the timestep under

which simple Euler updating is stable. For the parameter regime of an actin-like

filament, the first eigenvalue dominates with a value of 106 s−1.
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Figure B.1: The local stiffness matrix, Eq. B.9.

B.3 Large displacements

Using the stiffness matrix as it appears in Fig. B.1, and evolving through time via

Eq. B.3 is appropriate for small displacements. However, when individual elements

move a large distance away from their equilibrium configuration, or rotate through

a large angle, as happens in the helical configurations we with to simulate, Eq. B.3

becomes invalid. To resolve this, we have modified the simple finite element scheme

to translate each nodal displacement from global coordinates to local coordinates, by

replacing q̃i = qi − qi−1. This has the effect of translating the left endpoint of each

element to the origin. As long as each element’s right endpoint undergoes only a

small displacement, the condition for the validity of Eq. B.3 is restored.

However, large rotations render the stiffness matrix invalid. To correct for this,

the entire matrix is split into 16 matrices, each 3 × 3 matrix Kα corresponding to a

single cartesian coordinate or cartesian rotation. Each of these matrices is rotated

by ~φe, to the orientation of the left endpoint, before being assembled into a global
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stiffness matrix, via the rotation matrix R(~φe) · Kα · R(~φe)T . A description of the

rotation matrix can be found in [37]. This rotation is computationally taxing: the

simulation spends 70% of its time evaluating R(~φe).

B.4 Boundary conditions

We now wish to apply external forces to the elastic rod. These come in two types:

mechanical forces, where the magnitude and direction of the force are specified, and

kinematic constraints, where a constraint is imposed on the rod and the force required

to maintain the constraint must be calculated a posteriori.

Applying mechanical forces is done simply by adding a term to Eq. B.3,

∆tqi = −ρi

∑
j

∂2H
∂qi∂qj

qj + ρifi(t) (B.16)

where fi(t) is a force for the qi representing translational coordinates, or a torque for

the qi representing angular displacements.

Applying kinematic constraints is done as follows. Suppose we wish ~ri < ~r0 where

~r0 represents, for example, the surface of the cell wall. The correction vector normal

to the surface is ~ni = ~r0 − ~ri. If the constraint is already satisfied, nothing is done.

If it is not, we move ~r′i =⇒ ~ri + ~ni, where the prime indicates the constrained

coordinate. We can calculate the constraining force fc(t) from

∆tq
′
i = −ρi

∑
j

∂2H
∂qi∂qj

qj + ρifi(t) + ρifc(t). (B.17)

Combining this with Eq. B.16, we get

fc(t) =
1

ρi∆t
(q′i − qi) . (B.18)

B.5 Preservation of symmetry

The algorithm described so far is asymmetric. The coordinate transformation de-

scribed in Sec. B.3 forces a choice of a preferred origin and axis. This asymmetry

is unstable. In Fig. B.2, we show the result of the simulation for the situation de-

scribed in Sec. 5.3, where a filament of length Lfil = 3 µm is pulled azimuthally at
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both ends, in opposite directions. The initial configuration and boundary conditions

are symmetric, yet the configuration produced by the numerical simulation is highly

asymmetric. Taking smaller and smaller elements shrinks the discrepancy, however
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Figure B.2: Configuration of a 3 µm filament after symmetric azimuthal forces act
on its endpoints, as in Fig. 5.5, except with coordinates transformed to the left end-
point of each element (left), and to the right endpoint of each element (right). The
configurations are highly asymmetric, indicating a unphysical solution to Eq. B.2.

this has a high computational cost and the asymmetry is still present. To resolve this,

at each timestep we localize each element to a set of coordinates centered at the left

endpoint, and also to the right endpoint, and take their average. After this, there is

no preferred origin and a simulation of a symmetric boundary condition results in a

symmetric time evolution (Fig. 5.5).

B.6 Hookean spring test

To test the algorithm, an initially free filament lying in equilibrium on the z axis was

exposed to external forces ~F ext = ±20 pNŷ at its two ends. The filament responded

to the force by rotating (through a transient S-shape) and stretching by F ext/EA =

10%, as expected. Three snapshots are shown in Fig. B.3. This test confirms the
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linear stretching and qualitative bending behavior of the algorithm.
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Figure B.3: The time evolution of a 1.5 µm filament initially lying in the z-axis
subject to forces in the ŷ direction, indicated by the arrows. The unstretched length
is Lfil = 1500 nm and the final filament length is 1515 nm, recovering Hooke’s law.

B.7 Euler buckling test

To subject the algorithm to a nonlinear test, we reproduced the Euler buckling phe-

nomenon described in Sec. 3.2.5. For fixed ends, the buckling force, from Eq. 3.51,

is

FE = π2 B

L2
fil

. (B.19)

The Hookean force resulting from squeezing an Lfil-long filament in a cell of length

Lc is

F = EA (1− Lc/Lfil) . (B.20)

Equating these and solving for Lfil, we get the critical uncompressed filament length

L∗
fil =

1

2

(
Lc +

√
L2

c + 4π2B/EA
)

(B.21)

above which the filament will buckle, and below which the filament should remain

straight.

In Fig. B.4 A and B we show the results for Lfil < L∗
fil and Lfil > L∗

fil, respectively.

All runs are given 0.1% uniformly random noise in their initial condition. As expected,

the first one remains straight, while the second bows out after buckling.
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Figure B.4: A filament of length (left) Lfil = 1100 nm and (right) Lfil = 1300 nm
constrained inside a cell of length Lc = 1000 nm, with their ends anchored to the
poles (indicated by the black squares). To highlight the buckling phenomenon, we
decreased the stretching modulus by one order, to EA = 2 pN. The critical length
for Euler buckling is L∗

fil = 1205 nm. In agreement with this, the longer filament
buckles into a bowed configuration from the deciduous straight configuration, while
the shorter filament remains straight.
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